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Important properties
of the objective
function

(1) L-smooth

An upper bound. F(x)
cannot change too
fast

(2) u-strongly convex
A lower bound. F(x)
cannot change too
slow

Lipschitz Smoothness

e A function F(x) is L-Lipschitz smooth if its gradient is Lipschitz
continuous, that is,

IVF(x) — VF(y)|| < L||x —y]| for all x,y € R

e Intuition: The slope of the function does not change too quickly —
its rate of change is bounded by L

e Example: Is the following function Lipschitz smooth?
1
F(x) = §X2
F'(x) = x
F'(x) = F'(y)| = Ix = y|

Thus, F(x) is Lipschitz smooth with L =1
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Equivalent Condition to Check [-smoothness

e A function is L-smooth if for any x and vy it satisfies the following

L
upper bound | F(x) < F(y) + VF(y) (x —y) + §HX —y|?

e This is an important bound that we are going to frequently use in
SGD convergence analysis

° See Appendix B of this lecture's reading
https://arxiv.org/pdf/1606.04838.pdf

e For more conditions for Lipschitz smoothness check:
http://xingyuzhou.org/blog/notes/Lipschitz-gradient
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Recall: Convexity

DEFINITION 12.2 (Convex Function) Let C be a convex set. A function f :
C' — R is convex if for every u,v € C and « € [0, 1],

flaout+ (1 —a)v) < af(u)+ (L -a)f(v).
In words, f is convex if for any u, v, the graph of f between u and v lies below

the line segment joining f(u) and f(v). An illustration of a convex function,
f R — R, is depicted in the following.

af(u) + (1 - a)f(v)

flau+ (1 — a)v)

u v

'au+(1704)v

Source: Textbook on Understanding Machine Learning by
Shalev-Schwartz and Ben-David
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Consequences of Strong Convexity

If function F(x) is c-strongly convex then

1
F(x) > F(y)+ VF(y)' (x—y)+ §CHX — y|? for all x,y € R?

2¢c(F(x) — F(x*)) < ||[VF(x)||? for all x € R

This is called the Polyak-Lojasiewicz (PL) inequality.
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A c-strongly Convex and [-Smooth Function
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Satisfies the upper and lower bounds given by

F(x) < F(y) + V()T (x—y) + 5 llx — P

1
F(x) > F(y) + VF(y) (x—y) + 5clx — y|[* for all x,y & R?

Observe that L > ¢ needs to be true for both of the above inequalities to
be satisfied



Convergence proof Recap: Gradient Descent (GD)

e GD starts from a random initial point xg and updates x as follows:
Xrr1 = Xt — NV F(x) (4)

for a small learning rate n > 0.

e For convex F and small enough n GD is guaranteed to converge to
the optimal x*

e For non-convex functions it can get stuck at local minima
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Convergence proof Assumptions on the Objective Function

e F(x) is L-Lipschitz smooth. This implies that

L
F(x) < F(y) + VF(y) (x=y) + 5 x =y’
e F(x) is c-strongly convex. This implies that

1
Fx) > Fly) + VF(y) (x—y) + selx —y|]? for all .y € R
2¢(F(x) — F(x*)) < ||VF(x)|]? for all x € R?

We are going to show convergence of F(x;) to the optimal value F(x*)
under these conditions



Convergence proof Convergence Analysis of GD

Starting with the Lipschitz smoothness condition with x replaced by x;.1
and y replaced by x; we have

L
F(xe1) — F(xt) < vF(Xt)T(XtH — X¢) + §||Xt+1 - XtH2

< V() (~nVF(x)) + 5|~ nVF ()]
<n (1= 51) CITFIP)

Now using the strong convexity property 2¢c(F(x) — F(x*)) < |[[VF(x)||?

Flceea) = Fix) < 1 (1= 50) (-IVF(=))

VAN

(1= 57) (-26(F(x0) - F(x)



Convergence proof

Convergence Analysis of GD

Now using the strong convexity property 2c(F(x) — F(x*)) < ||[VF(x)||?

Flceea) = Fixe) < 1/ (1= 50) (-IVF(=I)

< (1 5n) (-26(Flx) - F(x')

F(xer1) = F(xe) < —ne(Fx:) — F(x7))

Fxer1)=F(X7) + F(X7) = F(x¢) < —ne(F(x:) = F(x7))
Fxe1) = F(X7) < —ne(F(xe) = F(X7)) + F(x:) = F(x7)
Fxer1) = F(X7) < (1 —ne)(F(xe) = F(x7))



Convergence proof Convergence Analysis of GD

From the previous slide we have

(1 =nec)(F(x:) = F(x7))
(1 — nc)?(F(x;—1) — F(x*)) continuing recursively

F(xer1) = F(x7)

IA A

N

< (1= ne)"(F(xo) — F(x"))

And we are done!

Convergence of GD

For a c-strongly convex and L-smooth function, if the learning rate
n < 1 and the starting point is Xo then F(x;) after t gradient descent
iterations is bounded as

Fxe) = F(x*) < (1 —nc)*(F(xo) — F(x%))

This proof is only for full-batch GD



Distributed ML — Why distributed?

e For large training datasets, it can be prohibitively slow to conduct
training at a single node.
e Solution: Split the dataset across m nodes into partitions Dy, D5,

... Dy, and perform data-parallel distributed training, using an
algorithm that is called Synchronous Distributed SGD

Parameter Server

1 m
Xt+1 = Xt — 1) [7; Zg(xt;&')]
=il

[ worker2 ] o

Data D, Data D,

13



Distributed ML in the Data-center Setting

e We have a massive training dataset, which is shuffled and split across
multiple nodes (servers in the cloud, often equipped with GPUs)

e A parameter server aggregates gradients from them using
synchronous, asynchronous, local-update and/or gradient
compression methods that we learned so far

’ —
Parameter Server W = W - ”AW
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Data Collection at Edge Clients

e Edge clients such as cell phone and loT devices collect massive
amounts of data that can be used to train informative ML models

e Consider the next word prediction service on cell phone keyboards
e Training data — What each user types on their phone

e This data can be used to train language models that can accurately

predict the next word

The next word

Privacy concerns and high communication cost



From Distributed ML to Federated Learning

e Main Idea: Keep the data at the edge
client, and bring the model training to
the edge

e Sketch of the Algorithm:

1. The aggregating server sends the
current version of the model to
available clients

2. The clients train the model locally
for a few iterations and send it back

3. The server aggregates the models
and goes back to step 1

16




The FedAvg Algorithm

Server Update: Initialize the model x;, and for each communication
round t =1,... T. At the t-th round, do the following:

e Select a set S; of m out of the K clients, uniformly at random

e Perform ClientUpdate(/, x;) at the chosen clients, and receive xi’ll

from client i € S;

e Aggregate the updates: x;11 = Z,-Egt p;X§i+)1

Client Updates: ClientUpdate(/, x;)

e [nitialize the local model xg% +— X, for 17 = Eé” local updates

Y

e For local iteration index j = 0,...,7;, — 1 do the following:

e Sample minibatch & from the local dataset D;, and make the local

update
XEIJ‘H = XE'; - ng(XE'}, &)

e Return xg';)rl — xg')T to the server



Effect of Data Heterogeneity

e MNIST (handwritten digit dataset) IID experiment — shuffle and
partition the data across 100 clients, each receiving 600 examples

e MNIST (handwritten digit dataset) non-1ID experiment — the data
sorted by labels and divided into 200 shards of size 300 and each of
the 100 clients receives 2 shards (at most 2 digits)

e Two different neural networks, a 2-hidden layer perceptron (2NN)
and 2-layer convolutional network (CNN) trained on these datasets

2NN IID NON-IID

0.0 1455 316 4278 3275

0.1 1474 (1.0x) 87 (3.6x) 1796 (2.4x) 664 (4.9x)
0.2 1658 (0.9x) 77 (4.1x) 1528 (2.8x) 619 (5.3x)
0.5 — (=)  75(4.2x) ) 443 (7.4%)
1.0 — (=) 70 (4.5%) — () 380 (8.6x)
CNN,E =5

0.0 387 50 1181 956

0.1 339(1.1x)  18(2.8x) 1100 (1.1x) 206 (4.6x)
0.2 337 (1.1x)  18(2.8x) 978 (1.2x) 200 (4.8x)
0.5 164 (2.4x) 18 (2.8x) 1067 (1.1x) 261 (3.7x)
1.0 246 (1.6x) 16 (3.1x) () 97 (9.9%)

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.



Table 1: Effect of the client fraction C' on the MNIST 2NN
with £ = 1 and CNN with £ = 5. Note C' = 0.0 corre-
sponds to one client per round; since we use 100 clients for
the MNIST data, the rows correspond to 1, 10 20, 50, and
100 clients. Each table entry gives the number of rounds
of communication necessary to achieve a test-set accuracy
of 97% for the 2NN and 99% for the CNN, along with the
speedup relative to the C' = 0 baseline. Five runs with
the large batch size did not reach the target accuracy in the
allowed time.

2NN I1ID NON-IID
& B = B =10 Be— o0 B =10
0.0 1455 316 4278 3275

0.1 1474 (1.0x) 87 (3.6x) 1796 (2.4x) 664 (4.9x)
0.2 1658 (0.9x) 77 (4.1x) 1528 (2.8x) 619 (5.3x)

0.5 — (=) 75(4.2x) — () 443 (7.4x)
1.0 — (=) 70 (4.5x) — (=) 380 (8.6x)
CNN, E =

0.0 387 50 1181 956

0.1 339(1.1x)  18(2.8x) 1100 (1.1x) 206 (4.6x)
0.2 337 (1.1x)  18(2.8x) 978 (1.2x) 200 (4.8x)
0.5 164 (2.4x)  18(2.8x) 1067 (1.1x) 261 (3.7x)
1.0 246 (1.6x) 16 (3.1x) — () 97 (9.9x)

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.



Multi-Model Federated Learning

Examples: Multiple FL applications on one device.

Keyboard prediction Predicting text selection Speech model

AN
[ IS
Ca0a0
\J
R

Hi, how can | help you?

Sounds good. Let's meet at 350 Third Street,
Cambridge later then

Source: federated.withgoogle.com
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Multi-Model Federated Learning

il

Key assumptions from previous work [1] Server

In each round, the server only allows partial participation,

and each active client can only train one model. Clients: D D D D D
1) Partial Participation: reduce communication cost Model 1:
2) Only train one model: computational constraints Model22 i @ E E O

ModeIS:E E E E E

Multi-model federated learning

21 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with
provable guarantees.” EAl International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.




Multi-Model Federated Learning

XN
Key assumptions from previous work [1] ServerE
In each round, the server only allows partial participation, “ I\
and each active client can only train one model. Clients: D D
1) Partial Participation: reduce communication cost Model 1:
Model 2: Bl

2) Only train one model: computational constraints

Model S:

Multi-model federated learning

22 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with
provable guarantees.” EAl International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.




MMEL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients.

In Round T
Server

il

3. Upload updated model parameters
to the server

D D D 2. Probability

feedback

1. “importance” measure

Probability vector -
Decide model
CIientiD [0.6,0.1,0.1,0.2] S S}u

u 1. How to ensure unbiased training?
O O .
DEIF 2. How to measure “importance?”

FL models S}D

O

23




MMEFL Optimal Variance-Reduced Sampling

In each global round (Aggregation):

In Round 1
Server

XN
XN
- o2 d; s
./ Wit =wi— )
L = < pS|l

dis = : dataset size ratio.

Z] 1 ]S

Probability vector
_ y ] Decide model S}D Ul =N Dieq Vfl : local update.

Client i [0.6,0.1, 0.1,

FL models E}u E}u

O

p§|i: probability of assigning client i to model s.

A s: set of assigned clients for model s.

24




MMEFL Optimal Variance-Reduced Sampling

In Round T In each global round (Aggregation):

Server

X
(oo ]
s el d,
./ witt = w§ - 2 L=y,
—| = < pS|l

Unbiased Training:

di,s T
E [Ziecﬂr,s T Ui,s]
Probability vector o sli
= Decide model D}

Client i [0.6,0.1, 0.1,

FL models E}u E}u

O

O

d;
=E [ZILV 1 rs lS]‘lEcﬂTS]
ZN d UT

25




MMEFL optimal variance-reduced sampling

Aggregation:
d; Random Variable X
Wb}-+1 — Wb? _ % i,s
iE€ALs Psi E[X] is given.

26




MMEFL optimal variance-reduced sampling

Aggregation: | | *
+1 d; . Random Variable X The optimal model weights wq
ws = ws — z —7 Uis [
€A s Ps)i E[X] is given. ,

High variance of X can make the training unstable...

_ C e /
Therefore, define our objective: ,# Full participation update
R E[X]

mln Z]EATS H Z ZSU’I:TS Zdz SUZ-S”2 AX — xk//

s ’L S (] n

sli ic A, L8l X = x : II // . WSr+1

Sampled update
X=x
High Var(X)

27




MMEFL optimal variance-reduced sampling

Aggregation: . : *
» dis Random Variable X The optimal model weights wq
Wg' = wg — z — Ui,s ,
iE€ALs Ds)i E[X] is given. J/
/
High variance of X can make the training unstable... ,/
f f- . . : /
Therefore, define our objective K Full participation update
/ E[X]

mln ZEATS | Z ZsUsz ZdzsUsz”z ‘« 4 //
1

S]’L 'LEAT s Sl

_v Sampled update
-5 X=x
Notice: variance is an ideal objective to stabilize
the training, but there could be other factors...

(will further discuss later)
28

Low Var(X)




MMEFL Optimal Variance-Reduced Sampling

Minimizing the variance of update 1: global round number

i: client index
s: model index
_ m: expected number of

S N active clients
di S

. T T |12 d; .: dataset size ratio
{H}_ln} E :]E.Aq-,s ” E : Ui,s - E :di,sUi,s” -
p .

p'rl . t: local epoch number
— ; S ) — i i
s=1 | €A, "SI =1 1 A s: set of active clients

Stps|z20 Zpshgl Zzpsh_m Vi, s

s=1 1=1

29




MMEFL Optimal Variance-Reduced Sampling

Closed-form solution of the problem

(m—N+k)aisl 4512 ... k,
T i=1 M; 5)
Psii = o7, "y
Via ifi=k+1,---,N.
- g -
where [|U7,|| = ||di U7l and MT = >, [|U7,[l. We
reorder clients such that M < M , for all 7, and k is the
. . Kk MT
largest integer for which 0 < (m — N + k) < ZJX/I—II:J
Full participation (N=4) Partial participation (active=2)
i=1 i=2 i3 | 'fl ) Li=2 i3
Aggregation /I -~ Aggregation
—> =4 —> =4

30 Proof: https://tinyurl.com/mmflos

T: global round number
i: client index

s: model index

m: expected number of
active clients

d; s: dataset size ratio

t: local epoch number
A s: set of active clients



Experiments

Avg Accuracy over 3 Models

3 Models: all Fashion-MNIST.
N=120 clients 0.6 .
m=12 (active rate=0.1) 2 o ——————
Each client: 30% labels. 0.5 i A,”" Wr e A A
> M

For each model: 10% high-data § 0.4- 7
clients, 90% low-data clients. o 7%
10% clients hold 52.6% data of é() 0.3 —— MMFL-GVR —— MIFA
each task. : MMFL-LVR —e— SCAFFOLD

0.21 § —v— MMFL-GVR* Full participation
25% clients: B; = 3 . —— FedVARP —+— Random
50% clients: B; = 2 0.11 ¢ | | | | | | |
25% clients: B; = 1 0 20 40 60 80 100 120 140

Num. Global Iterations
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0.6 - 0.6 -
(™ ,'/ P
> 1."- ‘ ’/ > // . a
g 0.4 ‘ y g 0.4 S
g / -
S - /- MMFL-GVR v S
< : - < .
AN ,\\MW MMFL-LVR WU
0.2 /) /=== Full Part. 0.2 Y R,
" ) Y _ 3 y .
e —-— Random P
FAE _ .
108 10° 101  10™ 102 103 10 10°

Experiments

Accuracy vs Communication cost

Communication cost

Accuracy vs Num. training tasks

Computation cost (num. training tasks)

(Params. transferred from clients to server)
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Experiments

3 Models: all Fashion-MNIST.
5 Models: two Fashion-MNIST,
one CIFAR-10, one EMNIST, one

Shakespeare.

10% clients only have data for
S-1 models.

33

TABLE 1

FINAL AVERAGE MODEL ACCURACY RELATIVE TO THAT FROM FULL
PARTICIPATION (THEORETICALLY THE BEST UNDER THE SAME LOCAL

TRAINING SETTINGS).

Comm. Comp. Mem.

Methods 3 tasks 5 tasks Cost Cost Cost
FedVARP [30] 0.712+.14 0.690+.19 Low Low High
MIFA [31] 0.868+.18 0.835+.18 Low Low High
SCAFFOLD [32] 0.794+.14 0.650+.24 Low Low Low
Random 0.778+.19 0.749+.23 Low Low Low
Full Participation | 1.000+.13 1.000+.14 High High Low
MMFL-GVR 0.893+.14 0.842+.20 Low High Low
MMFL-LVR 0.9124.15 0.849+.16 Low Low Low
MMFL-GVR* 0.960+.15 | 0.869+.18 Low High High




