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Lipschitz Smoothness

• A function F (x) is L-Lipschitz smooth if its gradient is Lipschitz

continuous, that is,

krF (x) � rF (y)k  Lkx � yk for all x, y 2 Rd

• Intuition: The slope of the function does not change too quickly –

its rate of change is bounded by L

• Example: Is the following function Lipschitz smooth?

F (x) =
1

2
x
2

F
0(x) = x

|F 0(x) � F
0(y)| = |x � y |

Thus, F (x) is Lipschitz smooth with L = 1
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Equivalent Condition to Check L-smoothness

• A function is L-smooth if for any x and y it satisfies the following

upper bound F (x)  F (y) + rF (y)>(x � y) +
L

2
kx � yk2

• This is an important bound that we are going to frequently use in

SGD convergence analysis

• Proof: See Appendix B of this lecture’s reading

https://arxiv.org/pdf/1606.04838.pdf

• For more conditions for Lipschitz smoothness check:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient
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Recall: Convexity

12.1 Convexity, Lipschitzness, and Smoothness 157

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u + (1 � ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex Function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u + (1 � ↵)v)  ↵f(u) + (1 � ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted in the following.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x, �) : f(x)  �}. (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a nonconvex function f : R ! R, along with its
epigraph, is given in the following.

Source: Textbook on Understanding Machine Learning by

Shalev-Schwartz and Ben-David
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Consequences of Strong Convexity

A Lower Bound on the Function

If function F (x) is c-strongly convex then

F (x) � F (y) + rF (y)>(x � y) +
1

2
ckx � yk2 for all x, y 2 Rd

Bound on the Optimality Gap

2c(F (x) � F (x⇤))  krF (x)k2 for all x 2 Rd

This is called the Polyak-Lojasiewicz (PL) inequality.
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A c-strongly Convex and L-Smooth Function

 

 

Similarly since . Furthermore, applying Jensen’s 

inequality for convex functions,  
 
 
 
(b) ​SC = Strongly Convex,  SS = Strongly Smooth 
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Satisfies the upper and lower bounds given by

F (x)  F (y) + rF (y)>(x � y) +
L

2
kx � yk2

F (x) � F (y) + rF (y)>(x � y) +
1

2
ckx � yk2 for all x, y 2 Rd

Observe that L � c needs to be true for both of the above inequalities to

be satisfied
29



Convergence proof Recap: Gradient Descent (GD)

• GD starts from a random initial point x0 and updates x as follows:

xt+1 = xt � ⌘rF (x) (4)

for a small learning rate ⌘ > 0.

• For convex F and small enough ⌘ GD is guaranteed to converge to

the optimal x⇤

• For non-convex functions it can get stuck at local minima

HOW FAST DOES IT CONVERGE to x⇤?
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Convergence proof Assumptions on the Objective Function

• F (x) is L-Lipschitz smooth. This implies that

F (x)  F (y) + rF (y)>(x � y) +
L

2
kx � yk2

• F (x) is c-strongly convex. This implies that

F (x) � F (y) + rF (y)>(x � y) +
1

2
ckx � yk2 for all x, y 2 Rd

2c(F (x) � F (x⇤))  krF (x)k2 for all x 2 Rd

We are going to show convergence of F (xt) to the optimal value F (x⇤)

under these conditions
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Convergence proof Convergence Analysis of GD

Starting with the Lipschitz smoothness condition with x replaced by xt+1

and y replaced by xt we have

F (xt+1) � F (xt)  rF (xt)
>(xt+1 � xt) +

L

2
kxt+1 � xtk2

 rF (xt)
>(�⌘rF (xt)) +

L

2
k � ⌘rF (xt)k2

 ⌘

✓
1 � L

2
⌘

◆
(�krF (xt)k2)

Now using the strong convexity property 2c(F (x) � F (x⇤))  krF (x)k2

F (xt+1) � F (xt)  ⌘

✓
1 � L

2
⌘

◆
(�krF (xt)k2)

 ⌘

✓
1 � L

2
⌘

◆
(�2c(F (xt) � F (x⇤)))

35



Convergence proof Convergence Analysis of GD

Now using the strong convexity property 2c(F (x) � F (x⇤))  krF (x)k2

F (xt+1) � F (xt)  ⌘

✓
1 � L

2
⌘

◆
(�krF (xt)k2)

 ⌘

✓
1 � L

2
⌘

◆
(�2c(F (xt) � F (x⇤)))

Assume that ⌘  1
L . Then

�
1 � L

2⌘
�

� 1
2 . Thus,

F (xt+1) � F (xt)  �⌘c(F (xt) � F (x⇤))

F (xt+1)�F (x⇤) + F (x⇤) � F (xt)  �⌘c(F (xt) � F (x⇤))

F (xt+1) � F (x⇤)  �⌘c(F (xt) � F (x⇤)) + F (xt) � F (x⇤)

F (xt+1) � F (x⇤)  (1 � ⌘c)(F (xt) � F (x⇤))
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Convergence proof Convergence Analysis of GD

From the previous slide we have

F (xt+1) � F (x⇤)  (1 � ⌘c)(F (xt) � F (x⇤))

 (1 � ⌘c)2(F (xt�1) � F (x⇤)) continuing recursively

...

 (1 � ⌘c)t+1(F (x0) � F (x⇤))

And we are done!

Convergence of GD

For a c-strongly convex and L-smooth function, if the learning rate

⌘  1
L and the starting point is x0 then F (xt) after t gradient descent

iterations is bounded as

F (xt) � F (x⇤)  (1 � ⌘c)t(F (x0) � F (x⇤))

37This proof is only for full-batch GD



Distributed ML – Why distributed? 
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Why Distributed SGD?

• For large training datasets, it can be prohibitively slow to conduct

training at a single node.

• Solution: Split the dataset across m nodes into partitions D1, D2,

. . .Dm and perform data-parallel distributed training, using an

algorithm that is called Synchronous Distributed SGD

Parameter Server

Worker 1 Worker 2 Worker m

Data D1 Data D2 Data Dm
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Distributed ML in the Data-center Setting

• We have a massive training dataset, which is shu✏ed and split across

multiple nodes (servers in the cloud, often equipped with GPUs)

• A parameter server aggregates gradients from them using

synchronous, asynchronous, local-update and/or gradient

compression methods that we learned so far

26



Data Collection at Edge Clients

• Edge clients such as cell phone and IoT devices collect massive

amounts of data that can be used to train informative ML models

• Consider the next word prediction service on cell phone keyboards

• Training data – What each user types on their phone

• This data can be used to train language models that can accurately

predict the next word

27Privacy concerns and high communication cost



From Distributed ML to Federated Learning
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The FedAvg Algorithm

Server Update: Initialize the model xt , and for each communication

round t = 1, . . .T . At the t-th round, do the following:

• Select a set St of m out of the K clients, uniformly at random

• Perform ClientUpdate(i , xt) at the chosen clients, and receive x(i)t+1

from client i 2 St

• Aggregate the updates: xt+1 =
P

i2St
pix

(i)
t+1

Client Updates: ClientUpdate(i , xt)

• Initialize the local model x(i)t,0  xt for ⌧i =
Eni
B local updates

• For local iteration index j = 0, . . . , ⌧i � 1 do the following:

• Sample minibatch ⇠j from the local dataset Di , and make the local

update

x(i)t,j+1 = x(i)t,j � ⌘g(x(i)t,j , ⇠j)

• Return x(i)t+1  x(i)t,⌧i to the server
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E↵ect of Data Heterogeneity

• MNIST (handwritten digit dataset) IID experiment – shu✏e and

partition the data across 100 clients, each receiving 600 examples

• MNIST (handwritten digit dataset) non-IID experiment – the data

sorted by labels and divided into 200 shards of size 300 and each of

the 100 clients receives 2 shards (at most 2 digits)

• Two di↵erent neural networks, a 2-hidden layer perceptron (2NN)

and 2-layer convolutional network (CNN) trained on these datasets

38
McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.



McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.



Multi-Model Federated Learning

Keyboard prediction Predicting text selection Speech model

Examples: Multiple FL applications on one device. 
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Source: federated.withgoogle.com



Multi-Model Federated Learning
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Model 1: 

Server

Clients: 

Model 2:  

Model S: 

…… … ………

Key assumptions from previous work [1]

In each round, the server only allows partial participation, 
and each active client can only train one model. 

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Multi-model federated learning

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with 
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies 
and Tools. Cham: Springer Nature Switzerland, 2022.



Multi-Model Federated Learning
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Multi-model federated learning

Model 1: 

Server

Clients: 

Model 2:  

Model S: 

…… … ………

In each round, the server only allows partial participation, 
and each active client can only train one model. 

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Key assumptions from previous work [1]

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with 
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies 
and Tools. Cham: Springer Nature Switzerland, 2022.
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MMFL Optimal Variance-Reduced Sampling

Client i

FL models

ServerIn Round 𝝉

2. Probability
feedback

Probability vector

3. Upload updated model parameters 
to the server

[0.6, 0.1, 0.1, 0.2]

…

Decide model

1. “importance” measure

Idea: the server prefers selecting more “important” clients. 

1. How to ensure unbiased training?
2. How to measure “importance?”



In each global round (Aggregation): 
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MMFL Optimal Variance-Reduced Sampling

Client i

FL models

ServerIn Round 𝝉

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

…

𝑤!"#$ = 𝑤!" − %
%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

𝑑%,! =
*$,#

∑%&'
( *%,#

: dataset	size	ratio.

𝑈%,!" = 𝜂" ∑,-$. ∇𝑓%,!
,,": local update.

𝑝!|%" : probability of assigning client 𝑖 to model 𝑠.

𝒜",!: set of assigned clients for model 𝑠.



In each global round (Aggregation): 
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MMFL Optimal Variance-Reduced Sampling

Client i

FL models

Server

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

…

𝑤!"#$ = 𝑤!" − %
%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Unbiased Training: 

𝔼 ∑%∈𝒜!,#
/$,#
0#|$
! 𝑈%,!"

= 𝔼 ∑%-$1 /$,#
0#|$
! 𝑈%,!" 1%∈𝒜!,#

= ∑%-$1 𝑑%,!𝑈%,!"

In Round 𝝉



MMFL optimal variance-reduced sampling
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Random Variable 𝑋

𝔼[𝑋] is given.
𝑤!"#$ = 𝑤!" − %

%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Aggregation: 



MMFL optimal variance-reduced sampling
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High variance of 𝑋 can make the training unstable…
Therefore, define our objective:  

𝑤!"

𝑤!"2$

The optimal model weights 𝑤!∗

Full participation update
𝔼[𝑋]

Sampled update
𝑋 = 𝑥′

𝑤!"#$𝑋 = 𝑥$

𝑋 = 𝑥4

High 𝑉𝑎𝑟(𝑋)

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤!"#$ = 𝑤!" − %

%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Aggregation: 



MMFL optimal variance-reduced sampling

28

High variance of 𝑋 can make the training unstable…
Therefore, define our objective:  

𝑤!"

𝑤!"2$

The optimal model weights 𝑤!∗

Full participation update
𝔼[𝑋]

Sampled update
𝑋 = 𝑥′

𝑤!"#$

Low 𝑉𝑎𝑟(𝑋)

Notice: variance is an ideal objective to stabilize 
the training, but there could be other factors… 
(will further discuss later)

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤!"#$ = 𝑤!" − %

%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Aggregation: 



MMFL Optimal Variance-Reduced Sampling
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τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑%,!: dataset size ratio
𝑡: local epoch number
𝒜",!: set of active clients

Minimizing the variance of update



MMFL Optimal Variance-Reduced Sampling
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Closed-form solution of the problem

Proof: https://tinyurl.com/mmflos

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑%,!: dataset size ratio
𝑡: local epoch number
𝒜",!: set of active clients

Full participation (N=4) Partial participation (active=2)
i=1 i=2 i=3

i=4

Aggregation
i=1 i=2 i=3

i=4
Aggregation



Experiments
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3 Models: all Fashion-MNIST.
N=120 clients
m=12 (active rate=0.1)
Each client: 30% labels. 

For each model: 10% high-data 
clients, 90% low-data clients.  
10% clients hold 52.6% data of 
each task. 

25% clients: 𝐵% = 3
50% clients: 𝐵% = 2
25% clients: 𝐵% = 1



Experiments
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Experiments
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3 Models: all Fashion-MNIST.

5 Models: two Fashion-MNIST, 
one CIFAR-10, one EMNIST, one 
Shakespeare. 

10% clients only have data for 
S-1 models. 


