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Federated Learning

Distributed learning with unshared local data
Server.:
1 Receive updates from clients

2 Aggregate local updates for a better global model

3 Broadcast new model parameters to clients A/I\

Local client (device): clients:D D D D D
d & & &

1 lobal model parameter

Get global model parameters Local data: (g
2 Train model parameters with local data
3 Send updated parameters to the server
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Multi-Model Federated Learning

Examples: Multiple FL applications on one device.

Keyboard prediction Predicting text selection Speech model

_ Swipe up to see your updates

Hi, how can | help you?

Sounds good. Let's meet at 350 Third Street,
Cambridge later then

& Remind me later ¥ Make a phone call

U

Source: federated.withgoogle.com
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Multi-Model Federated Learning

il

Key assumptions from previous work [1] Server

In each round, the server only allows partial participation,
and each active client can only train one model. Clients: D D D D D

1) Partial Participation: reduce communication cost Model 1:

Model2: d B EH H H

2) Only train one model: computational constraints

ModeIS:E E E E E

Multi-model federated learning

5 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated leaming with
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.




Multi-Model Federated Learning

XN
Key assumptions from previous work [1] ServerE
In each round, the server only allows partial participation, A‘ I\
and each active client can only train one model. Clients: D D
1) Partial Participation: reduce communication cost Model 1:
Model 2: El

2) Only train one model: computational constraints

Model S:

Multi-model federated learning

6 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated leaming with
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.




MMEL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients.

In Round T
Server

i

J0 O

Client i D
FL models E}D E}u
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Idea: the server prefers selecting more “important” clients.

In Round T
Server

i

D D D 1. “importance” measure

Client i D
FL models E}D E}u




MMEL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients.

In Round T
Server

. 5)

0L

1. “importance” measure

2. Probability
feedback

Clienti

FL models E}D E}u




MMEL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients.

In Round T
Server

i

D D D 2. Probability

feedback

1. “importance” measure

Probability vector .
Decide model
CIientiD [0.6,0.1,0.1,0.2] . S}u

FL models E}D E}u
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MMEL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients.

In Round T
Server

i

3. Upload updated model parameters
to the server

D D D 2. Probability

feedback

1. “importance” measure

Probability vector

B Decide model H
Client D [0.6,0.1,0.1, 0.7] > g}u
O O 1. How to ensure unbiased training?
FL mOdE|S D}D D}D - ”
- - 2. How to measure “importance?
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MMEL Optimal Variance-Reduced Sampling

In each global round (Aggregation):

d;
T+1 _ ,,T _ LS T
Ws T = Wy E T Ul-,s

s|i

In Round T
Server

n; . .
d; s = oy : dataset size ratio.
j=1 njrs

)

Probability vector .
) Decide model Ufs = Ny Y= Vf2: local update.
Clienti | | 10.6,01,0.1,07] e oo Uis =Mk Vis

FL models E}n E}u

p§|i: probability of assigning client i to model s.

A s: set of assigned clients for model s.
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MMEL Optimal Variance-Reduced Sampling

In Round T In each global round (Aggregation):

Server

dis
o witt = wi - z o Uis
000-
Unbiased Training:

il

Probability vector

= Decide model S}D
Client D [0.6,0.1,0.1,0.7] -
d.
=E|XN, 22U 1; ]
m| m| i=1,7 Yis IEA;
FL models oo o—-o [ Psi '
o} )

— VN T
- Zi=1 di,SUi,s
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MMEL optimal variance-reduced sampling

Aggregation:
wItl = wT — dis .  Random Variable X

T LS
€A Ps|i E[X] is given.
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MMEL optimal variance-reduced sampling

Aggregation:
» dis Random Variable X The optimal model weights wyg
Wit =wi— Y Ry o
(€A Ps)i E[X] is given. !
/
High variance of X can make the training unstable... ,/
. L ;
Therefore, define our objective: K Full participation update
R4 E[X]
mln ZEATS | Z i Zdt sUsz”z WX :‘xk//
Pyt ieA, ., P i=1 X =x : ‘o, wItl
Sampled update
X=x
High Var(X)

15




MMEL optimal variance-reduced sampling

Aggregation:
o dis Random Variable X The optimal model weights wyg
Wg = = Wg — Z — Ui ’
(€A Ps)i E[X] is given. !
/

High variance of X can make the training unstable... ,/

. L ;
Therefore, define our objective: K Full participation update

K E[X]
m1n ZEA” | Z i,S Zdz sUsznz 4“4 //
Sh 'LEATS =1

Notice: variance is an ideal objective to stabilize
the training, but there could be other factors...
(will further discuss later)

16

Low Var(X)




MMEL Optimal Variance-Reduced Sampling

Minimizing the variance of update

5 _
d'z.s T |12

min » Egu , || Y 22U, deUmll

{Psh} s—1 I ’LE.ATsp |z 1

17

T: global round number
[: client index

s: model index

m: expected number of
active clients

d; s: dataset size ratio

t: local epoch number
A s: set of active clients



MMEL Optimal Variance-Reduced Sampling

Closed-form solution of the problem T: global round number

107 | - i: client index
pT = (m—N +k) ?:11’34; ifi=1,2---,k, (5) s: model index
s 107, o m: expected number of
L ifi=k+1,---,N. " _
M; T active clients
where (07| = |[di, U7, | and M7 = S5, ||O7, [ We st ataset size ratlo
reorder clients such that M < M7, , for all 4, and & is the ' P : .
_ _ kM7 A s: set of active clients
largest integer for which 0 < (m — N + k) < =45,
- k
Full participation (N=4) Partial participation (active=2)
i= i= . .=1 i= 1
=1 i=2 |=3 . I4 ’yl 2 |=3
W Aggregation /-~ Aggregation
—) |:4 —) |=4

18 Proof: https://tinyurl.com/mmflos




MMEL Optimal Variance-Reduced Sampling

Closed-form solution of the problem T: global round number

17l o i: client index
r (m—N—|—k)ﬁ ifi=1,2,---,k, s: model index
Pl 107 |l Y fimk+l-- N ) m: expected number of
M B A active clients
whete [[07,|| = [[dioU7,|| and M7 = S5 |07, We ys: dataset size ratio
reorder clients such that M7 < M7, for all 4, and k is the t: local epoch number

, T A s: set of active clients
largest integer for which 0 < (m — N + k) < % 7,5
) 7

Gradient-based Variance-Reduce Sampling (GVR)

Computing the gradient norm is too expensive on the client side!

19 Proof: https://tinyurl.com/mmflos




Reduce computational cost

Computing the gradient norm is too expensive on T: global round number
the client side. i: client index
s: model index
Client i loss value m: expected number of
active clients
g - /\ d; s: dataset size ratio
di 3 t: local epoch number

min > a3

S:]_ 'IrEAT s

T |12
z S E :dz SU?, S || A s: set of active clients

Stpshzo Zpshgl Zzpsh_m V’Z,S

s=1 1=1

f—’|z

Loss-based Variance-Reduced Sampling (LVR)
20




Reduce computational cost

Computing the gradient norm is too expensive on T: global round number
the client side. i: clientindex
s: model index
Client i loss value m: expected number of
active clients
S - . /\ ;lif: d?taset;ize ral’;io
: local epoch number
II}Tin Z E.AT,S ” Z = S z ,S Z dz SU’:-S ”2 Ars: setpofactive clients
{pSH} s—1 1€A1—s p |3 F
Stpshzo Zpshgl Zzpsh_m V’Z,S
s=11=1

Now we have two methods to optimize the sampling distribution.

Can we analyze their influence on convergence speed?
21




Convergence proof

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2].

Theorem 4 (Convergence). Let w* denote the optimal weights of model s. If

the learning rate n, = 1—5’ G +1§K el then

(413)

T %12 VT
E(st ws” ) < (TK‘|"YT)2

Here we define v = max{22= 32L JAK Z?EN 1;" P],}
V= max{y;E(||w] — wZ‘HZ) (lf) Y07}
=E[Z] + Z] + Z7 ],
S (di s05.5)> (di,s)?
EZ | = KZ%EN pSh ‘|‘4LK Z?EN' d’i, srz s+max(d )E[ZzEN

E[Z]] = RE[N:| Sicn. (137 P fi s(wD) — di s fis (w]))?], where R = K—g
E[Z]] = (2 + K(2+ £)K%5% + 2 R[S, 157 P, — 1)2).

> IV fiss (w2 DI ]

7
ps|1.

22 [2] Ruan, Yichen, et al. "Towards flexible device participation in federated learning." International
Conference on Artificial Intelligence and Statistics. PMLR, 2021.




Convergence proof

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2].

- di s (di,s)? K IV fs,0(wi )]
E[Z]] = K Yo, B2 VALK Y, . T s+max(z- )[E[Zzej\, ]]

s|i ps|1,

E[Z]] = RE[|Ns| > ;enr. (137 P, fi,s(w]) — dis fi,s(w]))?], where R = §—39
E[Z]] = (2 + K(2+ ££)K%5% + 2B (Y, 137 P, — 1)2).

s [ 4 i 2
p— 1IN d UT
T : = E_:l E Z o, Ui } ; % U7, } 9)
IE[Zg] -> Sampled update variance (GVR) ||l
XS: B _Z dis(UZ) " disUjs | ] " di o o(U7,)TU ]
= = = i,jEAr s | — Qi sjs(Uj g r'T.s
In the proof: https://tinyurl.com/mmflos = I A T i J
(10)
s [ a2, (Ur,)TUr
. = di o (U7 2) (1 $Uj s+ - disd;.s
From the upper bound to variance term: ; ; Z Z }
(11)
”Z 1Vfls|| = KZ 1“sz s” (GM-HM inequality) S (L [ 1disUT, |12 .
=2, (Z ( . ||(1,,,.U:.~.||2)> (12)
s=1 3—1 — -2 . .
= - Y i U712 (13)
i s=1 i=1

23




Convergence proof

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2].

v di o756 (di,5)? 3041 IV fi,o (wi2D)I?
E[Z]] = K Y, 152 C ALK Y, d; sTi s+max( 2 )E[X . 1,

5|4 ps|1,

E[Z]] = RE[|N |[Z7,GN (1" P, fi,s(w]) — di s fi,s (w])) }]: where R = §—3292;
E[Z]] = (2 + K(2+ ££)K%5% + 2B (Y, 137 P, — 1)2).

E[Z]] -> Sampled loss variance (LVR), with similar GM-HM inequality.

Clienti loss value

A/N\
].'IllIl ZEATS ” Z ESU;,-S_Zd’E,SU;,-s”z
1=1

slﬁ r,-,eATsph
Stps\zzo Zps\zgl Zzpsh_m V’L S
s=1 i=1

24




Convergence proof

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2].

v di o756 (di,5)? 3041 IV fi,o (wi2D)I?
E[Z]] = K Y, 152 C ALK Y, d; sTi s+max( 2 )E[X . 1,

s|i ps|1,

E[Z]] = RE[|Ns| Xsen, (177 Pl fis(W]) — dijs fi,s(w]))?], where R = §—3292

. - 32 S T T
E[Z]] = (3 + K(2+ 4))K?6% + 25 R[(X e p 177 P, — 1)%)
dis

v Ps)i

IE[ZIE] -> Participation heterogeneity (or variance).

fl'he red term]is only related to dataset distribution and sampling distribution.

What is the meaning of this term?

25




Convergence proof

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2].

35 s T 1-

E(Z]] = (3 + K2+ ££)) K% + ZGE/[(Tcp, 177 P, — 1)),
dis
b2 P§|i

IE[Z;] -> Participation heterogeneity (or variance)

Recall our global aggregation rule:

Can be rewritten as:

wett = wg — (H) " Us

l lS’ ] UT_[ Ls""]




Convergence proof

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2].

_ 35 157 pr

E(Z]] = (3 + K2+ ££)) K% + ZGE/[(Tcp, 177 P, — 1)),
dis
i,s p:grli

IE[Z;] -> Participation heterogeneity (or variance) ! p
Recall our global aggregation rule: : |HZ|, = E 17°Pf, = E 1?T%
: Ds|i
|
|
E Notice E[|HE|{] = 1, therefore
|
|
l -red term=E[(|HI|, — 1)?]
Can be rewritten as: ! sii
I
|
|
|
|
|
|
|
|
|

This is also a variance!
witl =wi — (HH) T U

[ i Ls’"'] [ Ls"”]

27

How does this variance influence the training?




The influence of participation heterogeneity

|HE|; = Z 1P = Z 1”
pS|L

Vary = E[(JHE|, — 1)?]

High Vary: |HE|; may change a lot
across rounds.

Lead to unstable “global step.”
wg = =Wy — (H.s?)T Us

Impact the training especially at the
end stage of the training.

28

Low Var



Compare GVR and LVR

Global step size Global step size
400 150 n
—— MMFL-LVR —— MMFL-LVR !
—300{ -~ MMFL-GVR = ~--- MMFL-GVR
T T 100+
S 200 re)
= =
3 100 a v
0 50 100 150 0 50 100 150
Num. Global Iterations Num. Global Iterations
3 models 5 models

witl = wf — (HDT U
How to mitigate the impact of unstable “global step?”

29




Mitigate the impact of participation heterogeneity

Previous Aggregation Rule:
5l = z z e

i s|i

wstt = wg — (H5)'" Ug

New Aggregation Rule [3]:

N
wIHl — T _ (z d KT+ z dis(Ufs — hzs)) Uls — his should be small.
’ ’ AR Ps)i Even though |HZ|4 has a high

variance, the impact is small.

UL if i € Ap_qs

h’l’ _ lS )
LS T RS ifi e A
[,S ;lf l T—l,S

Server stores stale updates from clients, and use stale updates to stabilize the training. GVR*

30 [3] Jhunjhunwala, Divyansh, et al. "Fedvarp: Tackling the variance due to partial client
participation in federated learning." Uncertainty in Artificial Intelligence. PMLR, 2022.
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Recall

XN
Key assumptions from previous work [1] ServerE
In each round, the server only allows partial participation, A‘ I\
and each active client can only train one model. ——
? Clients:
1) Partial Participation: reduce communication cost Model 1:
Model 2: El

2) Only train one model: computational constraints

“Only train one model” is too ideal, without considering Model S:

heterogeneity of computational abilities. _ .
Multi-model federated learning

32 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated leaming with
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.




Multi-Model Federated Learning

Make more realistic assumptions

In each round, the server only allows partial participation,
and each active client i can train B; models in parallel.

1) Partial Participation: reduce communication cost
2) Client i can train B; models (B; < S):
Computational constraint & heterogeneity

“Powerful” clients train more models, leading to biased
convergence. How to achieve unbiased training?

33

Model 1:
Model 2:

Clients: @ D ;li
1 —]
d

Model S: E E

Multi-model federated learning



System model for heterogeneous MMFL

For ease of description, assume client i has B; processors, each processor
(i,b) can train one model independently.

1) Adjust the aggregation rule to ensure unbiased Notations:
training wy : global model parameters
A s: set of active “processors”

d; .: dataset size ratio
WST+1 - WST o z Pé,b),ngi,b),s EL-'S . th babili f havi

(55, . Ds|(i,b): the probability of having
' processor (i, b) to train model s

K T: global round index

[,S t, . .
p(Ti’b),S = G(Ti,b),s = nTz Vfi,sT t: local epoch index
iPs|(i,b) =

34




System model for heterogeneous MMFL

For ease of description, assume client i has B; processors, each processor
(i,b) can train one model independently.

1) Adjust the aggregation rule to ensure unbiased Notations:
training wy : global model parameters
A s: set of active “processors”
T+1 _ T Pt GF d; .: dataset size ratio
Wso TS T (Lb),sT(Lb).s T the probability of havin
(i,D)EA Ps|(i,b)- P y g
processor (i, b) to train model s
N B; N T: global round index
E Z Z E B B G( s Z di,s[E[G(Ti,b),s] t: local epoch index

Sampling at the "processor-level”
35




Experiments

3 Models: all Fashion-MNIST.
N=120 clients

m=12 (active rate=0.1)

Each client: 30% labels.

For each model: 10% high-data
clients, 90% low-data clients.
10% clients hold 52.6% data of
each task.

25% clients: B; = 3

50% clients: B; = 2
25% clients: B; = 1

36

Accuracy
o 9 i
N w (9] (@)

©
=

Avg Accuracy over 3 Models

i
»

e ——— S
v PR
ST e
P

|
ﬁ’/’—+— MMFL-GVR ~ —— MIFA

| - MMFL-LVR —e— SCAFFOLD
./ —+— MMFL-GVR* Full participation
. —— FedVARP —+— Random

0 20 40 60 80

100 120 140

Num. Global Iterations




0.6

Accuracy

o
N

(Params. transferred from clients to server)

Experiments

Accuracy vs Communication cost

©
N

-"J’--
;"?‘ /’l
Pt O ’
'-, ,/
/
I/
/" AR MMFL-GVR
A I‘\'Wliw MMFL-LVR
£l |/ /' ——- Full Part.
..... —= ! ’ —-— Random
/ .
108 10° 10 10U

Communication cost
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Accuracy

—
N

Accuracy vs Num. training tasks

o
~

/ .
/
[ K

Jd
—
o
~

.
""""

102 103 104 105
Computation cost (num. training tasks)




Experiments

3 Models: all Fashion-MNIST.
5 Models: two Fashion-MNIST,
one CIFAR-10, one EMNIST, one

Shakespeare.

10% clients only have data for
S-1 models.

38

TABLE 1

FINAL AVERAGE MODEL ACCURACY RELATIVE TO THAT FROM FULL
PARTICIPATION (THEORETICALLY THE BEST UNDER THE SAME LOCAL

TRAINING SETTINGS).

Comm. Comp. Mem.

Methods 3 tasks 5 tasks Cost Cost Cost
FedVARP [30] 0.7124.14 0.690+£.19 Low Low High
MIFA [31] 0.868+.18 0.835+.18 Low Low High
SCAFFOLD [32] 0.794+.14 0.650+.24 Low Low Low
Random 0.778+.19 0.749+.23 Low Low Low
Full Participation | 1.000+.13 1.000+.14 High High Low
MMFL-GVR 0.8934+.14 0.842+.20 Low High Low
MMEFL-LVR 0.9124.15 0.849+.16 Low Low Low
MMFL-GVR* 0.960+.15 | 0.869+.18 Low High High




sSummary

Motivation: stabilize MMFL training

lRed uce Variance

Gradient/ Loss
based sampling

A

y

A

(Participation

* e
[GVR_J‘

A\ 4

[Experiments]

39

LH eterogeneit

J

\

]—[Convergence analysis }

A hidden factor

> One client trains one model

_/

One client trains B; model



Multi-Model Federated Learning

Make more realistic assumptions

In each round, the server only allows partial participation,

. o - ; =
and each active client i can train B; models in parallel. Clients: @ D l;li
Other ways to model computational heterogeneity: Model 1:
1) Asynchronous training [4] Model 2: d H
2) Flexible local epochs number [5] Model S d d
3) Flexible model architectures [6] Multi-model federated learning

[4] Askin, Baris, et al. "FedAST: Federated Asynchronous Simultaneous Training.”
[5] Ruan, Yichen, et al. "Towards flexible device participation in federated learning."
[6] Park, Jong-lk, and Carlee Joe-Wong. "Federated Learning with Flexible Architectures.”
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