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Federated Learning

Server: 

1 Receive updates from clients

2 Aggregate local updates for a better global model

3 Broadcast new model parameters to clients

Local client (device): 

1 Get global model parameters

2 Train model parameters with local data

3 Send updated parameters to the server

Distributed learning with unshared local data
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Server

Clients: 

Local data: 



Multi-Model Federated Learning

Keyboard prediction Predicting text selection Speech model

Examples: Multiple FL applications on one device. 
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Source: federated.withgoogle.com



Multi-Model Federated Learning
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Model 1: 

Server

Clients: 

Model 2:  

Model S: 

…… … ………

Key assumptions from previous work [1]

In each round, the server only allows partial participation, 
and each active client can only train one model. 

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Multi-model federated learning

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with 

provable guarantees.” EAI International Conference on Performance Evaluation Methodologies 
and Tools. Cham: Springer Nature Switzerland, 2022.
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Multi-model federated learning
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…… … ………

In each round, the server only allows partial participation, 
and each active client can only train one model. 

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Key assumptions from previous work [1]

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with 
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and Tools. Cham: Springer Nature Switzerland, 2022.
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Client i

FL models

Server
In Round 𝝉

MMFL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients. 



Idea: the server prefers selecting more “important” clients. 
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Client i

FL models

Server
In Round 𝝉

1. “importance” measure

MMFL Optimal Variance-Reduced Sampling
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Client i

FL models

Server
In Round 𝝉

2. Probability
feedback

1. “importance” measure

MMFL Optimal Variance-Reduced Sampling

Idea: the server prefers selecting more “important” clients. 
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Client i

FL models

Server
In Round 𝝉

2. Probability
feedback

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

MMFL Optimal Variance-Reduced Sampling

1. “importance” measure

Idea: the server prefers selecting more “important” clients. 
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MMFL Optimal Variance-Reduced Sampling

Client i

FL models

Server
In Round 𝝉

2. Probability
feedback

Probability vector

3. Upload updated model parameters 
to the server

[0.6, 0.1, 0.1, 0.2]

…

Decide model

1. “importance” measure

Idea: the server prefers selecting more “important” clients. 

1. How to ensure unbiased training?
2. How to measure “importance?”



In each global round (Aggregation): 
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MMFL Optimal Variance-Reduced Sampling

Client i

FL models

Server
In Round 𝝉

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

…

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

𝑑𝑖,𝑠 =
𝑛𝑖,𝑠

σ𝑗=1
𝑁 𝑛𝑗,𝑠

: dataset size ratio.

𝑈𝑖,𝑠
𝜏 = 𝜂𝜏σ𝑡=1

𝐾 ∇𝑓𝑖,𝑠
𝑡,𝜏: local update.

𝑝𝑠|𝑖
𝜏 : probability of assigning client 𝑖 to model 𝑠.

𝒜𝜏,𝑠: set of assigned clients for model 𝑠.



In each global round (Aggregation): 
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MMFL Optimal Variance-Reduced Sampling

Client i

FL models

Server

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

…

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

Unbiased Training: 

𝔼 σ𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠

𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

= 𝔼 σ𝑖=1
𝑁 𝑑𝑖,𝑠

𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏 1𝑖∈𝒜𝜏,𝑠

= σ𝑖=1
𝑁 𝑑𝑖,𝑠𝑈𝑖,𝑠

𝜏

In Round 𝝉



MMFL optimal variance-reduced sampling
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Random Variable 𝑋

𝔼[𝑋] is given.
𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

Aggregation: 



MMFL optimal variance-reduced sampling
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High variance of 𝑋 can make the training unstable…
Therefore, define our objective:  

𝑤𝑠
𝜏

𝑤𝑠
𝜏−1

The optimal model weights 𝑤𝑠
∗

Full participation update
𝔼[𝑋]

Sampled update
𝑋 = 𝑥′

𝑤𝑠
𝜏+1𝑋 = 𝑥1

𝑋 = 𝑥𝑘

High 𝑉𝑎𝑟(𝑋)

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

Aggregation: 



MMFL optimal variance-reduced sampling
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High variance of 𝑋 can make the training unstable…
Therefore, define our objective:  

𝑤𝑠
𝜏

𝑤𝑠
𝜏−1

The optimal model weights 𝑤𝑠
∗

Full participation update
𝔼[𝑋]

Sampled update
𝑋 = 𝑥′

𝑤𝑠
𝜏+1

Low 𝑉𝑎𝑟(𝑋)

Notice: variance is an ideal objective to stabilize 
the training, but there could be other factors… 
(will further discuss later)

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

Aggregation: 



MMFL Optimal Variance-Reduced Sampling
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τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑𝑖,𝑠: dataset size ratio
𝑡: local epoch number
𝒜𝜏,𝑠: set of active clients

Minimizing the variance of update



MMFL Optimal Variance-Reduced Sampling
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Closed-form solution of the problem

Proof: https://tinyurl.com/mmflos

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑𝑖,𝑠: dataset size ratio
𝑡: local epoch number
𝒜𝜏,𝑠: set of active clients

Full participation (N=4) Partial participation (active=2)

i=1 i=2 i=3

i=4

Aggregation

i=1 i=2 i=3

i=4

Aggregation



MMFL Optimal Variance-Reduced Sampling
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Closed-form solution of the problem

Proof: https://tinyurl.com/mmflos

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑𝑖,𝑠: dataset size ratio
𝑡: local epoch number
𝒜𝜏,𝑠: set of active clients

Computing the gradient norm is too expensive on the client side! 

Gradient-based Variance-Reduce Sampling (GVR)



Computing the gradient norm is too expensive on 
the client side.  
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Client i loss value

Reduce computational cost

Loss-based Variance-Reduced Sampling (LVR)

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑𝑖,𝑠: dataset size ratio
𝑡: local epoch number
𝒜𝜏,𝑠: set of active clients



Computing the gradient norm is too expensive on 
the client side.  
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Client i loss value

Reduce computational cost

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of 
active clients
𝑑𝑖,𝑠: dataset size ratio
𝑡: local epoch number
𝒜𝜏,𝑠: set of active clients

Now we have two methods to optimize the sampling distribution. 
Can we analyze their influence on convergence speed? 



22

Convergence proof

𝑃𝑖,𝑠
𝜏 =

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2]. 

[2] Ruan, Yichen, et al. "Towards flexible device participation in federated learning." International 
Conference on Artificial Intelligence and Statistics. PMLR, 2021.
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Convergence proof

𝔼 𝑍𝑔
𝜏 -> Sampled update variance (GVR)

In the proof: https://tinyurl.com/mmflos

From the upper bound to variance term: 

σ𝑡=1
𝐾 ∇𝑓𝑖,𝑠

2
≤ 𝐾σ𝑡=1

𝐾 ∇𝑓𝑖,𝑠
2

(GM-HM inequality)

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2]. 
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Convergence proof

𝔼 𝑍𝑙
𝜏 -> Sampled loss variance (LVR), with similar GM-HM inequality.

Client i loss value

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2]. 
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Convergence proof

𝑃𝑖,𝑠
𝜏 =

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

𝔼 𝑍𝑝
𝜏 -> Participation heterogeneity (or variance). 

The red term is only related to dataset distribution and sampling distribution. 

What is the meaning of this term?

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2]. 
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Convergence proof

𝑃𝑖,𝑠
𝜏 =

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

𝔼 𝑍𝑝
𝜏 -> Participation heterogeneity (or variance)

Recall our global aggregation rule:

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

Can be rewritten as: 

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − (𝐻𝑠
𝜏)⊤ 𝑈𝑠

𝜏

𝐻𝑠
𝜏 = ⋯ , 1𝑖

𝑠,𝜏𝑃𝑖,𝑠
𝜏 , ⋯

⊤
, 𝑈𝑠

𝜏 = ⋯ ,𝑈𝑖,𝑠
𝜏 , ⋯

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2]. 
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Convergence proof

𝑃𝑖,𝑠
𝜏 =

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

𝔼 𝑍𝑝
𝜏 -> Participation heterogeneity (or variance)

Recall our global aggregation rule:

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏 𝑈𝑖,𝑠

𝜏

Can be rewritten as: 

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − (𝐻𝑠
𝜏)⊤ 𝑈𝑠

𝜏

𝐻𝑠
𝜏 = ⋯ , 1𝑖

𝑠,𝜏𝑃𝑖,𝑠
𝜏 , ⋯

⊤
, 𝑈𝑠

𝜏 = ⋯ ,𝑈𝑖,𝑠
𝜏 , ⋯

𝐻𝑠
𝜏
1 =෍

𝑖=1

𝑁

1𝑖
𝑠,𝜏𝑃𝑖,𝑠

𝜏 =෍

𝑖=1

𝑁

1𝑖
𝑠,𝜏 𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

Notice 𝔼 𝐻𝑠
𝜏
1 = 1, therefore 

red term=𝔼 𝐻𝑠
𝜏
1 − 1 2

This is also a variance! 

How does this variance influence the training?

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.)
We modified and adapted the proof from [2]. 
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The influence of participation heterogeneity

𝐻𝑠
𝜏
1 =෍

𝑖=1

𝑁

1𝑖
𝑠,𝜏𝑃𝑖,𝑠

𝜏 =෍

𝑖=1

𝑁

1𝑖
𝑠,𝜏 𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

𝑉𝑎𝑟𝐻 = 𝔼 𝐻𝑠
𝜏
1 − 1 2

High 𝑉𝑎𝑟𝐻: 𝐻𝑠
𝜏
1 may change a lot 

across rounds. 

Lead to unstable “global step.”

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − (𝐻𝑠
𝜏)⊤ 𝑈𝑠

𝜏

Impact the training especially at the 
end stage of the training. 

High Var Low Var



29

Compare GVR and LVR

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − (𝐻𝑠
𝜏)⊤ 𝑈𝑠

𝜏

3 models 5 models

How to mitigate the impact of unstable “global step?”
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Mitigate the impact of participation heterogeneity

𝐻𝑠
𝜏
1 =෍

𝑖=1

𝑁

1𝑖
𝑠,𝜏𝑃𝑖,𝑠

𝜏 =෍

𝑖=1

𝑁

1𝑖
𝑠,𝜏 𝑑𝑖,𝑠
𝑝𝑠|𝑖
𝜏

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − (෍

𝑖=1

𝑁

𝑑𝑖,𝑠ℎ𝑖,𝑠
𝜏 + ෍

𝑖∈𝒜𝜏,𝑠

𝑑𝑖,𝑠 𝑈𝑖,𝑠
𝜏 − ℎ𝑖,𝑠

𝜏

𝑝𝑠|𝑖
𝜏 )

ℎ𝑖,𝑠
𝜏 = ቐ

𝑈𝑖,𝑠
𝜏−1, 𝑖𝑓 𝑖 ∈ 𝒜𝜏−1,𝑠

ℎ𝑖,𝑠
𝜏−1, 𝑖𝑓 𝑖 ∈ 𝒜𝜏−1,𝑠

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − (𝐻𝑠
𝜏)⊤ 𝑈𝑠

𝜏

Server stores stale updates from clients, and use stale updates to stabilize the training. GVR*

Previous Aggregation Rule: 

New Aggregation Rule [3]: 

[3] Jhunjhunwala, Divyansh, et al. "Fedvarp: Tackling the variance due to partial client 
participation in federated learning." Uncertainty in Artificial Intelligence. PMLR, 2022.

𝑈𝑖,𝑠
𝜏 − ℎ𝑖,𝑠

𝜏 should be small. 

Even though |𝐻𝑠
𝜏|1 has a high 

variance, the impact is small. 
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Recall
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Multi-model federated learning

Model 1: 

Server

Clients: 

Model 2:  

Model S: 

…… … ………

In each round, the server only allows partial participation, 
and each active client can only train one model. 

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Key assumptions from previous work [1]

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with 

provable guarantees.” EAI International Conference on Performance Evaluation Methodologies 
and Tools. Cham: Springer Nature Switzerland, 2022.

“Only train one model” is too ideal, without considering 
heterogeneity of computational abilities. 
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Multi-model federated learning

Model 1: 

Server

Clients: 

Model 2:  

Model S: 

…… … ………

In each round, the server only allows partial participation, 
and each active client 𝑖 can train 𝑩𝒊 models in parallel.  

1) Partial Participation: reduce communication cost

2) Client 𝒊 can train 𝑩𝒊 models (𝑩𝒊 ≤ 𝑺): 

Computational constraint & heterogeneity

“Powerful” clients train more models, leading to biased 
convergence. How to achieve unbiased training? 

Make more realistic assumptions



System model for heterogeneous MMFL
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1) Adjust the aggregation rule to ensure unbiased 
training

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖,𝑏 ∈𝒜𝜏,𝑠

𝑃 𝑖,𝑏 ,𝑠
𝜏 𝐺 𝑖,𝑏 ,𝑠

𝜏

𝑃 𝑖,𝑏 ,𝑠
𝜏 =

𝑑𝑖,𝑠
𝐵𝑖𝑝𝑠|(𝑖,𝑏)

𝜏 , 𝐺 𝑖,𝑏 ,𝑠
𝜏 = 𝜂𝜏෍

𝑡=1

𝐾

∇𝑓𝑖,𝑠
𝑡,𝜏

Notations:
𝑤𝑠
𝜏: global model parameters

𝒜𝜏,𝑠: set of active “processors”

𝑑𝑖,𝑠: dataset size ratio

𝑝𝑠|(𝑖,𝑏)
𝜏 : the probability of having 

processor 𝑖, 𝑏 to train model 𝑠
𝜏: global round index
𝑡: local epoch index

For ease of description, assume client 𝑖 has 𝐵𝑖 processors, each processor 
(𝑖, 𝑏) can train one model independently. 



System model for heterogeneous MMFL
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1) Adjust the aggregation rule to ensure unbiased 
training

𝑤𝑠
𝜏+1 = 𝑤𝑠

𝜏 − ෍

𝑖,𝑏 ∈𝒜𝜏,𝑠

𝑃 𝑖,𝑏 ,𝑠
𝜏 𝐺 𝑖,𝑏 ,𝑠

𝜏

𝔼 ෍

𝑖=1

𝑁

෍

𝑏=1

𝐵𝑖

1(𝑖,𝑏),𝑠
𝜏 𝑑𝑖,𝑠

𝐵𝑖𝑝𝑠|(𝑖,𝑏)
𝐺 𝑖,𝑏 ,𝑠
𝜏 =෍

𝑖=1

𝑁

𝑑𝑖,𝑠𝔼 𝐺(𝑖,𝑏),𝑠
𝜏

Sampling at the ”processor-level”

Notations:
𝑤𝑠
𝜏: global model parameters

𝒜𝜏,𝑠: set of active “processors”

𝑑𝑖,𝑠: dataset size ratio

𝑝𝑠|(𝑖,𝑏)
𝜏 : the probability of having 

processor 𝑖, 𝑏 to train model 𝑠
𝜏: global round index
𝑡: local epoch index

For ease of description, assume client 𝑖 has 𝐵𝑖 processors, each processor 
(𝑖, 𝑏) can train one model independently. 



Experiments
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3 Models: all Fashion-MNIST.
N=120 clients
m=12 (active rate=0.1)
Each client: 30% labels. 

For each model: 10% high-data 
clients, 90% low-data clients.  
10% clients hold 52.6% data of 
each task. 

25% clients: 𝐵𝑖 = 3
50% clients: 𝐵𝑖 = 2
25% clients: 𝐵𝑖 = 1



Experiments

37



Experiments

38

3 Models: all Fashion-MNIST.

5 Models: two Fashion-MNIST, 
one CIFAR-10, one EMNIST, one 
Shakespeare. 

10% clients only have data for 
S-1 models. 



Summary
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Gradient / Loss 
based sampling

Convergence analysis

Participation 
Heterogeneity

Motivation: stabilize MMFL training

Reduce Variance

A hidden factor

GVR*

Experiments

One client trains one model

One client trains 𝐵𝑖 model



Multi-Model Federated Learning
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Multi-model federated learning

Model 1: 

Server

Clients: 

Model 2:  

Model S: 

…… … ………

In each round, the server only allows partial participation, 
and each active client 𝑖 can train 𝑩𝒊 models in parallel.  

Other ways to model computational heterogeneity: 

1) Asynchronous training [4]

2) Flexible local epochs number [5]

3) Flexible model architectures [6] 

Make more realistic assumptions

[4] Askin, Baris, et al. "FedAST: Federated Asynchronous Simultaneous Training.”

[5] Ruan, Yichen, et al. "Towards flexible device participation in federated learning."
[6] Park, Jong-Ik, and Carlee Joe-Wong. "Federated Learning with Flexible Architectures."
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