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Abstract—Federated learning (FL) allows multiple clients to
collaboratively train a model without sharing their private data.
In practical scenarios, clients frequently engage in training mul-
tiple models concurrently, referred to as multi-model federated
learning (MMFL). MMFL exacerbates traditional FL challenges
like the presence of non-i.i.d. data: since each client may only
be able to train one model in each training round, the set of
clients training each model will change in each round, introducing
instability when clients have different data distributions. Existing
single-model FL approaches leverage inherent client clustering to
accelerate convergence in the presence of such data heterogeneity.
However, since each MMFL model may train on a different
dataset, extending these ideas to MMFL requires creating a
unified cluster or group structure that supports all models
while coordinating their training. In this paper, we present
the first group-based client-model allocation scheme in MMFL
able to accelerate the training process and improve the MMFL
performance. We also consider a more realistic scenario in which
models and clients can dynamically join the system during train-
ing. Empirical studies on real-world datasets show our MMFL
algorithms outperform several baselines up to 15%, particularly
in more complex and statically heterogeneous scenarios.

Index Terms—Federated learning, Multi-Model Federated
learning, Dynamic Resource Allocation

I. INTRODUCTION

In Federated Learning (FL), edge devices collaboratively
train a shared model locally without sharing their private data
[1]. The typical FL setting assumes that one single model is
collectively trained. However, in many real-world scenarios,
there is a need for Multi-Model Federated Learning (MMFL)
[2], [3], [4], where multiple models are trained concurrently
across the same set of clients. For example, FL applications
such as Google keyboard prediction [5], keyword-spotting
[6], speech recognition [7] may each require timely updates
to reflect evolving user behavior, especially under scenarios
with limited time frames, such as daily usage patterns or
adapting to new language inputs. In these scenarios, MMFL
enables concurrent updates across multiple models, allowing
them to be trained within the required time frame, thereby
maintaining performance more effectively than sequentially
training separate individual models.

The single-model FL assumes that all clients collectively
contribute to training a single model. However, directly extend-
ing this approach to the multi-model scenario is not feasible,
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as clients typically lack the computational resources to train
every model in each round. Therefore, in this paper, together
with prior works [2], [3], [4], we assume that clients are only
able to train one model in each round and, hence, each model
experiences partial client participation in a single training
round. However, these earlier works still suffer from high
variance across all models with partial client participation
since they ignore heterogeneity in client data, resulting in slow
convergence and highlighting the need for an effective strategy
for assigning clients to models.

There have been many works to focus on global variance re-
duction in single-model FL [8], [9], [10]. These works mitigate
the impact of high variance in partial participation by adjusting
server aggregation rules to balance client participation [8],
[11], introducing extra information (e.g., stale updates) to
stabilize updates [9], [10], [12], [13], or leveraging data
distributions to form client groups [14], [15]. In this paper, we
aim to form client groups in an MMFL system that efficiently
organizes models’ training for different groups in a round-
robin manner, addressing the variance reduction and speeding
up convergence through high inter-group heterogeneity as
demonstrated for a single FL model in [15].

One of the most common ways of dividing clients into
groups is via client clustering according to their local data.
Previous work on client clustering groups clients based on
dataset size [16] or gradient similarity [17], [14], with different
clustering algorithms (bipartitioning [17], soft clustering [16]
and K-means [14]). However, directly implementing single-
model FL clustering methods to form clusters in MMFL
has many challenges to address: 1) In single-model FL,
client clustering typically involves forming distinct clusters
tailored to a single model. Similarly in MMFL, clusters could
be formed independently for each model. We aim to develop
a unified clustering structure that maximizes heterogeneity
across all groups. However, the varying clustering require-
ments of each model pose significant challenges to establishing
such a unified structure, as each model may have distinct
grouping needs that are difficult to reconcile within a single
framework. 2) The number of groups is often determined by
the natural clustering structure, while the number of training
models is set by the system, which means they may not always
match. In this case, it is essential to carefully manage the
rotation between models and groups to avoid leaving groups
idle, which represents a waste of resources.
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Fig. 1: Illustration of the proposed algorithm with S = 3
models. In each global round, models (denoted as s = 1,2,3)
select clients exclusively from different clusters, represented
by circles (orange), triangles (blue), and squares (green). Each
model is trained by every cluster in a round-robin manner.
After each cycle, the clustering structure is updated again.

These challenges are further exacerbated by the potential
dynamics of the clients and training models present in the sys-
tem. For example, new users of mobile devices may introduce
new data distributions into the MMFL system. Similarly, a
health technology company may introduce new training tasks,
such as stress detection, alongside existing objectives such as
heart rate monitoring. Managing the arrival of new clients has
been studied in single-model FL [18], but in MMFL, there is
no prior work discussing the arrival of new models.

This dual challenge requires MMFL to adapt to varying
client participation while dynamically allocating resources
across an expanding set of models. The non-IID nature of
real-world data, coupled with new clients and models, can
disrupt resource allocation, worsen data heterogeneity, and
complicate model-group rotation across rounds. Thus, strate-
gies that dynamically adjust to new clients and models are
critical for the robustness and scalability of MMFL systems.
To our knowledge, we are the first to address client and model
(task) dynamics in MMFL.

Our Contributions are summarized as follows:

• We propose an effective grouping framework for MMFL,
which groups clients according to their data distributions.
Our framework handles scenarios where MMFL models
either share a similar cluster structure or have overlapping
group structures across models.

• Given client groups (clusters), we propose a rotation
scheme to match training models to each groups exclu-
sively, accelerating the convergence for all models.

• We study the dynamic settings, in which new clients
or models (i.e., new tasks) can be integrated in the
MMFL system, thus improving scalability by adapting
our algorithm to dynamic settings.

• We conduct extensive experiments under various model-
specific cluster structures with differing complexities in
forming a unified structure. Our results demonstrate con-
sistently better accuracy with improvements of up to 15%
over the baselines.

II. PROPOSED METHODS

Consider an MMFL system with S models and N clients
and our objective is to minimize the total loss on all models:

min
θ1,··· ,θS

L = min
θ1,··· ,θS

S

∑
s=1

N

∑
i=1

di,s fi,s(θs) (1)

where θs denotes the parameters of model s and fi,s(θs)
is the local objective for client i, model s, defined as the
expected local loss of client’s i’s data distribution on model s:
fi,s(θs)=

1
ni,s

∑ξ∈Di,s l(θs,ξ ), where ξ is a data sample and Di,s

denote the set of data points available to client i for model s,
with ni,s = |Di,s| representing the number of data points from
client i. The loss function l measures the performance for each
individual data point, e.g., cross entropy, and di,s =

ni,s

∑
N
j=1 n j,s

quantifies the proportion of client i’s data relative to the total
data available for model s. Let Nt be the set of clients in round
t, and St as the set of models in round t.

Figure 1 provides an overview of the proposed method with
S = 3 models and LΛ = 3 groups. Similar to the approach in
[15] for single-FL, we require that each model samples clients
exclusively from one cluster per global round to accelerate
convergence. To efficiently manage the training of all models,
we ensure that a model is exclusively trained by one cluster
and shifted to another cluster in the next round, following
a round-robin scheme. We index the round-robin cycle as
Λ= 1,2, . . . ,T , where each cycle consists of LΛ steps (denoted
as τ = 1, . . . ,LΛ), with each step corresponding to a global
round t = ∑

Λ−1
Λ′=1 LΛ′+τ . Note that LΛ depends on the number

of clusters we generate at the beginning of a round-robin cycle.
In each round-robin cycle Λ, we first determine the clustering
structure (referred to as the C-Step) and then employ the
round-robin rotation to conduct training over LΛ global rounds
for all models (referred to as the T-Step), which will be
detailed in the following section. In this paper, we restrict
our study to the case where the number of clusters is greater
than or equal to the number of models, and the opposite case
has been omitted for lack of space.

A. Clustering and Round-Robin Rotation in MMFL

1) Consistent Cluster Structure Across Models: We first
consider the scenario in which models have similar underlying
cluster structures. For example, in various human activity
recognition or health monitoring models (using data from
wearable), there may be common clusters between models,
based on characteristics such as age, occupation and lifestyle
(athletes vs. elderly vs. children).

C-Step: At the beginning of a round-robin cycle Λ (at global
round t = ∑

Λ−1
Λ′=1 LΛ′ +1), the server distributes global models

θ t
s (s ∈ St ) to each client. Each client performs a forward

pass for each model to obtain a vector δ Λ
i = [ fi,1, . . . , fi,s, . . . ]

containing the training loss of each model, and propagates
this vector to the central server. At the server, these vectors
are utilized as features representing the loss patterns across
all models to form clusters {CΛ,g}LΛ

g=1. The server minimizes
the within-cluster variance by leveraging the K-means [19]
algorithm. Specifically, clients are assigned to clusters by



minimizing the Euclidean distance between their loss vectors
δ Λ

i and cluster centroids cg: d(δ Λ
i ,cg) =

√
∑s∈St ( fi,s− cg[s])2.

Centroids are then updated as the mean of all assigned vectors:
cg =

1
|CΛ,g| ∑δ Λ

i ∈CΛ,g
δ Λ

i . We set the optimal number of clusters
be at least the number of models and use the silhouette method
to determine the optimal number of clusters. The clusters
correspond to the client groups.

T-Step: After clustering, all clients within a cluster are
assigned to train the same model. Each model is trained by
a uniformly random sample of clients within its assigned
cluster(s). Every such active client performs K local epochs of
training on the assigned training task and then propagates the
parameters to the server for aggregation. After this, the cluster
is assigned to the next model for training, in a round-robin
manner. When the model-group rotation finishes all LΛ circle
steps, the round-robin cycle Λ ends. Note that C-Step might
create more clusters than the number of models, leading to
idle clusters without a model to train in a round-robin routine.
To fully utilize clusters per round, we create pseudo models
as copies of the models with the largest losses in the current
stage to fill up the routine. In this case, models with higher loss
may receive updates from more than one cluster. Algorithm 1
shows the pseudocode for the whole process.

2) Inconsistent Cluster Structure Across Models: We now
consider the more common scenario where models have dif-
ferent underlying cluster structures, i.e., a client is likely to
have different cluster neighbours across models. For example,
a smartphone user can generate data for speech recognition as
well as active calorie data for health monitoring, which are
intuitively unlikely to be correlated. In this case, the C-Step
above may result in nearly random clustering outcomes. To
address the global clustering issue in such cases, we propose
a modified C-Step. In the modified C-Step, we determine the
global clustering structure solely based on one model s during
the current round-robin cycle Λ. In the subsequent cycle Λ+1,
the global clustering structure is determined based only on
model s+1. In practice, when the data distributions of different
models are clearly correlated — for instance, when multiple
models utilize similar or identical datasets (such as in speech
recognition and keyword spotting) — the original C-Step can
effectively produce a unified cluster structure. Otherwise, the
modified C-Step is a safe choice to ensure increased inter-
cluster heterogeneity for at least one model.

B. Dynamic MMFL with New Clients and Models

1) Group allocation for new clients: When new clients
arrive, the server requests their local loss fi,s for each model.
We maintain the current clustering pattern and compute the
cosine similarity of the new clients’ loss vectors with the
existing cluster centroids {cg}LΛ

g=1 to decide which cluster they
belong to. Then we perform the normal training routine. Note
that the arrival of new clients can alter the number of clusters,
as they may introduce new data distributions, which can occur
in the next round-robin cycle (C-Step).

2) Arrival of new models: We consider an MMFL system
that can accept new FL models. In this case, the newly joined
model waits until the current round-robin cycle finishes to

(a) Consistent Cluster Structure (b) Inconsistent Cluster Structure

Fig. 2: Test accuracy of the consistent structure in section 2.1.1
and inconsistent structure from 2.1.2

performs the C-step along with the other models and performs
the training.

Algorithm 1 MMFL-Group Sampling

1: for Round-robin cycle Λ = 1,2, . . . ,T do
2: Perform C-Step according to each scenario to deter-

mine global clusters {CΛ,g}.
3: Determine cycle length LΛ as the number of clusters.
4: for cycle step τ = 1,2, . . . ,LΛ do
5: for model s = 1, . . . ,LΛ in parallel do
6: decides assigned cluster gs = (s+ τ) mod L
7: model s samples clients from CΛ,gs
8: end for
9: for sampled client i in parallel do

10: Current global round t = ∑
Λ−1
Λ′=1 LΛ′ + τ

11: θ
t+1
i,s ←Local Update(θ t

i,s) for assigned model
12: Send update to the server.
13: end for
14: Server aggregates: θ t+1

s = 1
|At,s| ∑i∈At,s θ t

i,s,

15: where At,s is the set of participating clients.
16: end for
17: end for

III. EXPERIMENTS

A. Experiment Setup
We conduct experiments using four datasets: Fashion-

MNIST, CIFAR-10, MNIST, and EMNIST, forming five
models (training tasks) with repeated EMNIST. To model
a scenario where clients’ data distributions exhibit a natu-
rally clustered pattern, we assume 5 ground-truth clusters
for each model, with each cluster containing 20% of total
labels for each model. For instance, the EMNIST dataset
has 47 labels, result in each cluster’s clients containing data
with approximately 9-10 labels. For most experiments, we
construct 30 clients, each with 30-40 data samples per model.
We set the active participation rate for each group to be
1/6 to further simulate a heterogeneous environment. For the
Fashion-MNIST and EMNIST training tasks, we construct two
similar CNNs, each with 2 convolutional layers, 2 pooling
layers, and 2 linear layers, and with different output layer
sizes. For the CIFAR-10 and MNIST task, we use a pre-
activation ResNet [20]. All experiments are performed for 5
random seeds, and the average is taken.



(a) (b)

Fig. 3: For the inconsistent cluster structure scenario, we re-
duce the Loss matrices dimension to 2 dimensions to illustrate
the cluster structure. Here the selected task is MNIST and the
clustering is more distinct at round 25 compared to round 5

(a) Dynamic Arrival of Clients (b) Dynamic Arrival of Tasks

Fig. 4: Test accuracy for the dynamic cases. Case (a) contains
24 static clients and 36 new clients. Case (b) contains 60
clients in total.

B. Evaluation

We compare our algorithm with two baseline methods:
random allocation and the MMFL round-robin algorithm [21].
Compared to our method, the round-robin algorithm randomly
divides clients into 5 groups without any clustering. The
random allocation algorithm selects 1/6 of total clients and
assigns a model to each client, all in a random manner.

1) Static MMFL system: We first present the results of
the consistent cluster structure scenario (Section II-A1) in
Figure 2a. In this scenario, MMFL-Group Sampling approach
demonstrated a significant accuracy gap (>10%) compared to
the other two algorithms. This improvement is likely due to
the C-Step’s ability to capture the cluster information well.
Therefore, clients are highly homogeneous within the cluster
and heterogeneous across clusters, leading to much faster
convergence based on [15]’s theoretical analysis. We provide
visualizations in Figure 3 to illustrate the cluster structure
generated by our algorithm in global rounds t = 5,25. PCA is
applied to reduce the dimensionality of the loss matrix used
for clustering. We can observe that at round t = 25 the cluster
structure displayed a more distinct pattern compared to round
t = 5. These results suggest that our clustering approach grad-
ually increases the inter-cluster (group) heterogeneity as the
training goes, which can potentially enhance the convergence
speed [15].

We further conduct an experiment with completely inde-
pendent model cluster structures to challenge our algorithm in
the worst case. In this case, the unified cluster structure for all
models is very complex or may even not exist, applying orig-

inal C-Step leads to almost random cluster result. Therefore,
we adopt the modified C-Step as discussed in Section II-A2.
Our experiment setup is as follows: we still partition each task
into 5 ground truth groups based on label clusters. For each
task, we randomly select clients and assign them data points
corresponding to a specific cluster, and we repeat for each
task, therefore creating independent cluster structure for each
task. As shown in Figure 2b, the results illustrated a noticeable
drop in accuracy across all models compared to the outcomes
in Figure 2a. This decline can be attributed to the increased
complexity of the cluster structures. However, MMFL-Group
Sampling method continues to exhibit strong performance with
at least 4% increase of accuracy among all models.

2) Dynamic MMFL System: In Figure 4a, we present the
results of new clients joining midway through the training
process. The experiment involves 60 clients in total, with 24
static clients and 36 dynamic clients joining progressively.
We assume that the inter arrival time of clients follows an
exponential distribution with rate λ . We set λ = 0.1 and
the client arival times arrival are indicated by the dashed
vertical lines in Figure 4a. Compared to Figure 2a, which
features only 30 clients, the performance of random and
round-robin methods remains similar or worsens despite hav-
ing additional clients. Conversely, MMFL-Group sampling
shows improved performance with the extra resources. The
improved performance of the algorithm can be attributed to
the systematic clustering of new clients into existing groups,
which preserves the intra-group homogeneity contributions.
Compared to the baselines, this approach mitigates the impact
of diverse data distributions from new arrivals, ensuring more
consistent updates and enhanced overall model convergence.

In Figure 4b, we present the scenario where dynamic models
join during training, beginning with MNIST, Fashion MNIST,
and CIFAR training task from round t = 0 to round t = 30.
The first EMNIST training task is introduced in round t = 30,
followed by the arrival of the second EMNIST training task in
round t = 60, as marked by the dashed vertical lines. Since the
experiment setup is very similar with the consistent case expect
for the dynamic tasks, we observe similar average performance
except for average degrade of accuracy due to the late join of
dynamic tasks. Given the dynamic task’s good performance,
we show that with a unified cluster structure to increase inter-
group heterogeneity, MMFL-Group sampling approach speeds
up the convergence for new models, leading to much better
performance overall. We provide more detailed experiment
results in the Technical Report [22].

IV. CONCLUSION

In this work, we present the MMFL-Group Sampling algo-
rithm that addresses the data heterogeneity issue in the MMFL
system. We incorporate a loss-based grouping mechanism
to group clients together and adopt a round-robin way of
allocating models to each group. The algorithm is appliable
in a practical MMFL system with arrivals of new clients and
models. Our algorithm has empirically proved the efficiency
of handling cases where group structure is both consistent and
inconsistent. We also show an advantage in improving system
scalability when new clients and models join midway.
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