Carnegie Mellon University

Optimal Variance-Reduced Client Sampling in Multiple Models Federated Learning

MAY 17, 2024

Haoran Zhang, Zekai Li, Zejun Gong, Marie Siew, Carlee Joe-Wong, Rachid El-Azouzi

Outline

• Introduction

Federated Learning (FL)

Multi-Model Federated Learning (MMFL)

- Optimal variance-reduced client sampling in MMFL
- Experiments
- Future directions about this work

Federated Learning

Decentralized learning with unshared local data

Local client (device):

1 Get global model parameters

2 Train model parameters with local private data

3 Send updated parameters to the server

Server:

- 1 Receive updates from clients
- 2 Aggregate local updates for a better global model

(Google example) Multiple FL models are running on your phone.

Keyboard prediction

Predicting text selection

Speech model

Sounds good. Let's meet at 350 Third Street, Cambridge later then

4 Source: federated.withgoogle.com

Multi-model federated learning

Carnegie Mellon University

Single-model federated learning

5

Problems we may have

Server communication cost

Multi-model federated learning

Problems we may have

Server communication cost

Assumptions:

7

- 1. Partial client participation/communication
- 2. Each client can only send 1 model to the server

Multi-model federated learning

Problems we may have

Server communication cost

Assumptions:

- 1. Partial client participation/communication
- 2. Each client can only send 1 model to the server

Questions:

How to sample clients? How to sample models?

Multi-model federated learning

Carnegie Mellon University

8

Idea: the client with higher gradient norm can provide more informative updates.

Idea: the client with higher gradient norm can provide more informative updates.

Idea: the client with higher gradient norm can provide more informative updates.

Idea: the client with higher gradient norm can provide more informative updates.

Idea: the client with higher gradient norm can provide more informative updates.

$$\begin{split} \min_{\{p_{s|i}^{\tau}\}} \; & \sum_{s=1}^{S} \mathbb{E}_{\mathcal{A}_{\tau,s}} \left[\| \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau} - \sum_{i=1}^{N} d_{i,s} U_{i,s}^{\tau} \|^{2} \right] \\ \text{s.t.} \; p_{s|i}^{\tau} \geq 0, \; & \sum_{s=1}^{S} p_{s|i}^{\tau} \leq 1, \; \sum_{s=1}^{S} \sum_{i=1}^{N} p_{s|i}^{\tau} = m \quad \forall i,s \end{split}$$

Minimizing the variance of update

τ: global round number *i*: client index
s: model index
m: expected number of active clients
d_{i,s}: dataset size ratio

 τ : global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio

 τ : global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number

Closed-form solution of the problem $U_{i,s}^{ au} = \sum_{t=1}^{E}
abla f_{i,s}(w_{i,s, au}^t)$

$$p_{s|i}^{\tau} = \begin{cases} (m - N + k) \frac{\|\tilde{U}_{i,s}^{\tau}\|}{\sum_{j=1}^{k} M_{j}^{\tau}} & \text{if } i = 1, 2, \cdots, k, \\ \frac{\|\tilde{U}_{i,s}^{\tau}\|}{M_{i}^{\tau}} & \text{if } i = k+1, \cdots, N. \end{cases}$$
(5)

τ: global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number $\mathcal{A}_{\tau,s}$: set of active clients

where $\|\tilde{U}_{i,s}^{\tau}\| = \|d_{i,s}U_{i,s}^{\tau}\|$ and $M_i^{\tau} = \sum_{s=1}^{S} \|\tilde{U}_{i,s}^{\tau}\|$. We reorder clients such that $M_i^{\tau} \leq M_{i+1}^{\tau}$ for all *i*, and *k* is the largest integer for which $0 < (m - N + k) \leq \frac{\sum_{j=1}^{k} M_j^{\tau}}{M_k^{\tau}}$.

20 Proof: https://tinyurl.com/mmflos

- τ: global round number
 i: client index
 s: model index
 m: expected number of active clients
 d_{i,s}: dataset ratio
- *t*: local epoch number

Algorithm 1 MMFL optimal variance-reduced sampling 1: Input: expected active client number m, clients: $1, 2, 3, \dots, N$, models: $1, \dots, S$, learning rate η_{τ} 2: Initialization: The global model weights w_s^1 for each model 3: for global round $\tau = 1, \cdots, T$ do for each client $i = 1, \dots, N$, in parallel do 4: for each model $s = 1, \dots, S$ do 5: $w_{i,s}^{1} = w_{s}^{\tau}$ 6: 7: for local epochs $t = 1, \dots, E$ do $w_{i,s}^{t+1} = w_{i,s}^t - \eta_\tau \nabla f_i(w_{i,s}^t)$ 8: 9: end for record weights difference $U_{i,s} = \sum_{t=1}^{E} \nabla f_i(w_{i,s}^t)$ 10: Send $||U_{i,s}||$ to the server 11:end for 12:end for 13:14:At server: Receive $||U_{i,s}||$ for all clients and all models 15: $p_{s|i}$ =ClientSampling({ $||U_{i,s}||$ }) using the closed-form solution 16:Select clients by $p_{s|i}$, obtain the set of active clients for each model: $\mathcal{A}_{\tau,s}$ 17:for each model $s = 1, \dots, S$, in parallel do 18:

- 19: Request $U_{i,s}$ from clients $i \in \mathcal{A}_{\tau,s}$
- 20: Server aggregation: $w_s^{\tau+1} = w_s^{\tau} \eta_{\tau} \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}} U_{i,s}$
- 21: Broadcast $w_s^{\tau+1}$ to clients
- 22: **end for**
- 23: end for

Carnegie Mellon University

Minimize its variance

$$\{p_{s|i}^{\tau}\} \to \mathcal{A}_{\tau,1}, \cdots, \mathcal{A}_{\tau,S} \to G_1^{\tau}, \cdots, G_s^{\tau}, \cdots, G_S^{\tau}$$

$$w_s^{\tau+1} = w_s^{\tau} - \eta_{\tau} \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}} U_{i,s}$$

Sampling probability distribution

 $\{p_{s|i}^{\tau}\} \to \mathcal{A}_{\tau,1}, \cdots, \mathcal{A}_{\tau,S} \to G_1^{\tau}, \cdots, G_s^{\tau}, \cdots, G_S^{\tau}$

$$w_s^{\tau+1} = w_s^{\tau} - \eta_{\tau} \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}} U_{i,s}$$

Sampling probability distribution

$$\{p_{s|i}^{\tau}\} \to \mathcal{A}_{\tau,1}, \cdots, \mathcal{A}_{\tau,S} \to G_1^{\tau}, \cdots, G_s^{\tau}, \cdots, G_S^{\tau}$$

Set of active clients for each model

$$w_s^{\tau+1} = w_s^{\tau} - \eta_{\tau} \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}} U_{i,s}$$

Sampling probability distribution

Sampled update for each model

 $\{p_{s|i}^{\tau}\} \to \mathcal{A}_{\tau,1}, \cdots, \mathcal{A}_{\tau,S} \to G_1^{\tau}, \cdots, G_s^{\tau}, \cdots, G_S^{\tau}$

Set of active clients for each model

$$w_s^{\tau+1} = w_s^{\tau} - \eta_{\tau} \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}} U_{i,s}$$

Sampling probability distribution

Sampled update for each model

 $\{p_{s|i}^{\tau}\} \to \mathcal{A}_{\tau,1}, \cdots, \mathcal{A}_{\tau,S} \to G_1^{\tau}, \cdots, G_s^{\tau}, \cdots, G_S^{\tau}$

Set of active clients for each model

The optimal model weights w_s^*

 $w_s^{\tau+1} = w_s^{\tau} - \eta_{\tau} \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}} U_{i,s}$

 W_{s}^{τ}

Preliminary experiments

Experiment settings:

N=120 (total clients)

m=12 (expected active clients)

5 models (all Fashion-MNIST classification, with different non-iid level)

52.6% data belongs to 10% clients

E=5 (local epoch number)

5 random seeds

Computing the gradient norm is too expensive on the client side.

τ: global round number
i: client index
s: model index
m: expected number of active clients
d_{i,s}: dataset ratio
t: local epoch number

Computing the gradient norm is too expensive on the client side.

τ: global round number
i: client index
s: model index
m: expected number of active clients
d_{i,s}: dataset ratio
t: local epoch number

Computing the gradient norm is too expensive on the client side.

 τ : global round number *i*: client index s: model index *m*: expected number of active clients $d_{i,s}$: dataset ratio *t*: local epoch number

Using loss is in fact optimizing another thing...

Using loss is in fact optimizing another thing...

Experiment results

Experiment settings:

N=80 (total clients)

m=16 (expected active clients)

4 models (Fashion-MNIST, MNIST, EMNIST, Fashion-MNIST)

E=1 (local epoch number)

5 random seeds

Related Work

Optimal Sampling for Federated Learning (single-model)

N: The number of clients. m: expected number of active clients per round

$$\begin{split} \min_{\{p_i^t\}} & \mathbb{E}_{\mathcal{A}_t} \left[\left(\sum_{i \in \mathcal{A}_t} \frac{d_i}{p_i^t} \nabla f_i - \sum_{i=1}^N d_i \nabla f_i \right)^2 \right] \\ \text{s.t. } 0 \le p_i^t \le 1 \quad \forall i, \ \sum_{i=1}^N p_i^t = m \end{split}$$

The closed-form solution can be deduced by optimizing a Lagrangian function.

[2] Chen, Wenlin, Samuel Horváth, and Peter Richtárik. "Optimal Client Sampling for Federated Learning." Transactions on Machine Learning Research (2022).

Related Work

42

Optimal Sampling for Federated Learning (single-model)

N: The number of clients. m: expected number of active clients per round

$$p_i^t = \begin{cases} (m - N + k) \frac{\|\tilde{U}_i\|}{\sum_{j=1}^k \|\tilde{U}_j\|} & \text{if } i = 1, 2, \cdots, k, \\ 1 & \text{if } i = k+1, \cdots, N. \end{cases}$$
(1)

where $\|\tilde{U}_i\| = \|d_i U_i\|$, $d_i = n_i / \sum_{j=1}^N n_j$ (n_i is the number of samples for client i), and U_i is an unbiased estimator of ∇f_i . Reorder clients to guarantee $\|\tilde{U}_i\| \leq \|\tilde{U}_{i+1}\|$ for all i, and k is the largest integer for which $0 < (m - N + k) \leq \frac{\sum_{j=1}^k \|\tilde{U}_j\|}{\|\tilde{U}_k\|}$. p_i is the probability of sampling client i for the current round.

[2] Chen, Wenlin, Samuel Horváth, and Peter Richtárik. "Optimal Client Sampling for Federated Learning." Transactions on Machine Learning Research (2022).