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ABSTRACT

Real-world application of volumetric medical image segmen-
tation is still challenging due to the domain shift problem and
the disability to process volumetric information efficiently by
existing algorithms. To address these problems, we propose a
3D Swin Transformer with a pyramidal downsampling strat-
egy to process volumetric information efficiently, dubbed as
PDSwin. Specifically, the improved 3D Swin Transformer in-
cludes a spatial downsampling strategy that downsamples 2D
slices pyramidally according to the spatial relationship, re-
ducing the computation complexity while providing a wider
downsampled receptive field. Furthermore, we propose a
cluster-based domain-adversarial learning algorithm to at-
tenuate the domain shift problem. The algorithm generates
fine-grained cluster-based domains instead of employing
center-based domains, ameliorating the domain-adversarial
learning performance. We evaluated our model against other
competitive models on brain stroke lesion segmentation and
prostate segmentation tasks. Extensive experimental results
indicated that our proposed model outperforms other models,
demonstrating the efficacy of our proposed method.

Index Terms— Medical image segmentation, Efficient
3D Transformer, Domain-adversarial learning

1. INTRODUCTION

Automatic medical image segmentation could assist doctors
in the evaluation of various diseases. However, a common
challenge faced by many medical image segmentation meth-
ods is the domain shift problem, which occurs when the spe-
cific properties of medical images, such as different imaging
modalities and scanners, vary between different centers. This
can lead to poor segmentation performance in real-world ap-
plications. Additionally, achieving both accuracy and effi-
ciency can be challenging in volumetric medical image seg-
mentation tasks.

Recently, the Vision Transformer [1] has gained popu-
larity in a variety of applications. To improve the perfor-
mance, some approaches focused on reducing the complex-
ity of global self-attention by simplifying different operations

[2], while others focused on increasing the receptive field of
local self-attention [3]. In the medical field, the implementa-
tion of the Transformer has made significant progress in both
2D and 3D medical image segmentation [4, 5]. However, the
Transformer’s high computation complexity may hinder its
use in medical facilities, and it may overfit to specific do-
mains, leading to performance degradation. To address this
issue, various domain generalization (DG) methods have been
proposed [6]. However, many of these DG methods utilize
the available data domains coarsely, leading to a lack of fine-
grained utilization of information from center-based domains.

To reduce the extra complexity of 3D Transformer and
address the domain shift problem, we propose a pyramidally
downsampled 3D Swin Transformer, dubbed as PDSwin
Transformer. The PDSwin Transformer pyramidally down-
samples 2D slice windows according to their spatial prox-
imity, reducing the computation complexity and providing
a wider downsampled receptive field. We also propose a
cluster-based domain-adversarial learning algorithm to ad-
dress the domain shift problem. Inspired by Aslani et al. [6],
we construct a similar network for domain-adversarial learn-
ing and further propose a cluster-based domain generation
algorithm to improve the DG ability. Extensive experiments
demonstrate our proposed method’s effectiveness in improv-
ing volumetric medical image segmentation.

2. METHODOLOGY

Fig. 1 illustrates the overview of our proposed method. Our
method consists of two components. The first component is
a U-shaped PDSwin-based network for segmentation. The
second component is a domain-adversarial learning network
with the cluster-based domain generation algorithm for DG.
Our method aims to achieve efficient and accurate volumetric
medical image segmentation on unseen domains.

2.1. Pyramidally Downsampled Transformer for Effi-
cient Segmentation

The PDSwin Transformer is based on 3D Swin Transformer
[4]. Self-attention is defined as follows:
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Fig. 1. An overview of our proposed method, consisting of a U-shaped PDSwin-based architecture and a cluster-based domain-
adversarial learning network. The PDSwin Transformer pyramidally downsamples 2D slice windows based on their spatial
proximity.
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where Q,K, V ∈ Rhwd×C denote the query, key, and value
matrices, respectively. hwd and C represent the number of
patches in a 3D window and the dimension of a patch, re-
spectively. Swin Transformer [4] separates an input image
into various regions, namely windows, computes local self-
attention in each window, and enlarges the receptive field by
shifting windows.

In the PDSwin Transformer, we assume that Qk ∈
Rhw×C denotes a query matrix of a 2D slice window with the
slice index, k, such that Qk(i, j) = Q(i, j, k) ∈ R1×C , where
(i, j, k) denotes the index of a patch. K ′, V ′ ∈ Rm×C denote
pyramidally downsampled K and V , and m is the number of
patches after downsampling. K ′ = Dk(K), V ′ = Dk(V ),
where Dk is the pyramidal downsampling function. The
self-attention is computed as follows:
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where Attentionk is the self-attention of slice k in a 3D win-
dow. The self-attention of the entire 3D window is defined as
Attention (i, j, k) = Attentionk (i, j).

In our PDSwin Transformer, we allow for 2D slice win-
dows, p, to be involved in the computation of K ′ and V ′ for
the target 2D slice window, k, if they satisfy the following
requirement:

Distance (p, k) =| p− k |≤ L (3)

where L ∈ R+ denotes a distance threshold. Theoretically, p
and k should be in the same 3D window. For the convenience

of programming, when the target 2D slice window k is periph-
eral to its 3D window, exterior 2D slice windows can also be
included as long as they meet the requirement in equation (3).
The downsampling level, l, of 2D slice window p is defined as
l = L−Distance(p,k)

L . Given that the number of patches in 2D
slice window p is hw, the number of patches in downsampled
2D slice window p is t = ⌈hwl⌉. ⌈hwl⌉ denotes the smallest
integer greater than or equal to hwl.

We utilize average pooling for downsampling, defined as
follows:

Dk (X)p,q =
1

| Rq |
∑

(i,j)∈Rq

Xp(i, j) (4)

Dk (X)p =
[
Dk (X)p,0 , ..., Dk (X)p,t−1

]T
(5)

where q denotes a specific patch after average pooling. Rq

denotes the set of original patches involved in the average
pooling for the patch q. Dk (X)p,q , Xp(i, j) ∈ R1×C rep-
resent the average pooled and original patch vector, respec-
tively. Dk(X)p denotes the downsampled 2D slice window p.
These processes are applied to all 2D slice windows that sat-
isfy equation (3), resulting in the overall downsampling func-
tion Dk (X), which is defined as:

Dk (X) =
[
Dk (X)k−L , ..., Dk (X)k+L

]T
(6)

By using this approach, we are able to create a pyrami-
dally downsampled 3D window for K and V matrices, with
fewer patches in 2D slice windows that are farther from the
target 2D slice window k.

Theoretically, with the same computation complexity, the
PDSwin Transformer supports a wider receptive field com-
pared to the 3D Swin Transformer. The computation com-
plexity of a 3D Swin Transformer and PDSwin Transformer is
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respectively, where HWD denotes the number of input
patches. When the computation complexity of the PDSwin
Transformer is equal to that of the 3D Transformer, 2C2+2hwC

C2+hwC
extra 2D window slices are involved in PDSwin Trans-
former’s computation, providing an extra receptive field at
a coarse-grained level.

2.2. Cluster-Based Domain-Adversarial Learning

In order to accurately utilize available domains at a fine-
grained level, we propose a cluster-based domain-adversarial
learning algorithm, as shown in Fig. 1 (light yellow). A
ResNet50 is used to extract information from center-based
domains, and K-Means clustering is applied to divide these
center-based domains into cluster-based domains. We then
conduct a similarity analysis among the resulting cluster-
based domains, measuring the average high-dimensional
vector of each cluster-based domain against the vectors of the
other cluster-based domains using cosine similarity. Cluster-
based domains with high similarity are merged to create clear
domain demarcations.

Inspired by Aslani et al. [6], we construct a regulariza-
tion network and an auxiliary loss function for DG. The reg-
ularization network consists of three perceptron layers and a
softmax layer. It receives the latent features from the encoder
to produce category-wise domain predictions. The auxiliary
loss function is defined as follows:

Lreg(hi, ci) = −
∑
j

hij log cij (7)

where ci and hi denote the category-wise domain prediction
and one-hot encoded vector of the domain ground truth after
random shuffling, respectively. cij and hij denote the com-
ponents of ci and hi, respectively. The random shuffling con-
fuses the encoder, impeding its ability to interpret domain in-
formation, thereby addressing the domain shift problem.

The overall loss function is defined as follows:

L = Lseg + αLreg (8)

where Lseg denotes the soft-Dice loss function, and α is set
to 0.2.

2.3. Implementation Details

All experiments were conducted using Python 3.9.12, Py-
Torch 1.11.0, and MONAI 0.9.1. We utilized an Nvidia
GeForce RTX 3090 GPU with 24 GB of memory and a
V100 GPU with 16 GB of memory during training, with a
batch size of 12. Automatic mixed precision was used to
accelerate training and conserve memory. Gradient accu-
mulation was employed to maintain a consistent batch size.
The initial learning rate was set to 0.0005, with exponen-
tial decay. The Adam optimizer was used for training, with

a momentum of 0.9. The ResNet50 model utilized in our
cluster-based domain generation algorithm was pretrained on
ImageNet. Other hyperparameters were the same as those
used by Hatamizadeh et al. [5]. We implemented other
competitive models following their open-source codes. These
models were optimized to adjust different segmentation tasks.

3. EXPERIMENTS AND RESULTS

3.1. Datasets and Evaluation Metrics

Previous works [7, 8, 9] have made significant progress in
brain stroke lesion and prostate segmentation. We also im-
plemented our model in these two segmentation tasks to vali-
date its effectiveness. For the brain stroke lesion segmentation
task, the dataset contains 655 MRIs from 33 sites [10]. We di-
vided the dataset into the training, validation, and testing sets,
with 499 MRIs from 24 sites, 65 MRIs from 3 sites, and 91
MRIs from 6 sites, respectively. For the prostate segmenta-
tion task, various datasets were collected to support multiple-
domains experiments, including 116 MRIs from 6 sites in to-
tal [11, 12, 13]. These datasets were divided into the train-
ing set with 79 MRIs from 3 sites, the validation set with 13
MRIs from 1 site, and the testing set with 24 MRIs from 2
sites. Cluster-based domain generation algorithm generated
84 cluster-based domains in the brain stroke lesion segmen-
tation task and 25 cluster-based domains in the prostate seg-
mentation task. We adopted the Dice coefficient as the evalu-
ation metric to evaluate the model’s performance.

3.2. Comparison with Other State-of-the-Art Models

We compare our method with three CNN-based and three
Transformer-based methods in brain stroke lesion segmen-
tation and prostate segmentation tasks. Center-based and
cluster-based domains are utilized in training separately to
evaluate the result of using different domain demarcations.

Quantitative results are reported in Table 1 and Table 2.
All models with DG method improve the unseen domains seg-
mentation accuracy, demonstrating effectiveness in applying
DG method to attenuate the domain shift problem. Compared
with only adopting center-based domains, the cluster-based
domain generation algorithm further boosts the segmenta-
tion performance in unseen domains for all models, with an
average Dice improvement of 2.61% in brain stroke lesion
segmentation and 1.54% in prostate segmentation. Quanti-
tative results also indicate that all four Transformer-based
models outperform three CNN-based models, validating the
capability of Transformer in volumetric segmentation. The
self-attention module improves the model in abstracting long-
range dependencies. Therefore, Transformer-based models
are more effective in the global interpretation of image infor-
mation, which is crucial in improving large-scale 3D image
segmentation performance. 2D Transformer-based models,
Swin Unet and Focal Unet, are worse in comparison with 3D
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Fig. 2. Qualitative comparisons of brain stroke lesion segmentation on the testing set. Red and green contours denote the
ground truth and prediction, respectively.

Type Methods Cluster-based Center-based No DG

2D Focal Unet [3] 0.5523 0.5326 0.5003
Swin Unet [4] 0.5617 0.5340 0.4947

3D

3D Unet [16] 0.5006 0.4582 0.4153
V-net [15] 0.5421 0.5237 0.4825

SegResNet [14] 0.5362 0.5189 0.4746
UNETR [5] 0.5992 0.5713 0.5394
Our method 0.6273 0.5978 0.5659

Table 1. Dice scores of different models on brain stroke le-
sion segmentation.

Type Methods Cluster-based Center-based No DG

2D Focal Unet [3] 0.8302 0.8138 0.7872
Swin Unet [4] 0.8324 0.8204 0.7907

3D

3D Unet [16] 0.8157 0.8018 0.7572
V-net [15] 0.8257 0.8085 0.7690

SegResNet [14] 0.8232 0.8038 0.7667
UNETR [5] 0.8420 0.8289 0.8122
Our method 0.8547 0.8386 0.8119

Table 2. Dice scores of different models on prostate segmen-
tation.

Transformer-based models, showing the importance of exca-
vating spatial information. For two 3D Transformer-based
models, Unetr and our PDSwin, the latter shows an improve-
ment in the Dice coefficient in almost all experiments with an
improvement of 1.72% in two tasks averagely.

Qualitative results of brain stroke lesion segmentation
are shown in Fig. 2. The ground truth and prediction are
illustrated with red and green contours, respectively. Com-
pared with other models, our method generates more accurate
prediction in the brain stroke lesion MRI segmentation task.

3.3. Evaluation on Efficiency

We evaluate the efficiency of our model with other competing
models. The number of parameters and average inference
time of the models in brain stroke lesion segmentation are
reported in Table 3. The average inference time is measured
among all volumetric cases of the testing set on a single
V100 GPU mentioned in Section 2.3. For 2D Transformer-
based models, Swin Unet and Focal Unet, they have a clear
supremacy in efficiency compared with 3D Transformer-

Type Methods #Params Inference time

2D Focal Unet [3] 59M 173.3sec
Swin Unet [4] 57M 132.7sec

3D

3D Unet [16] 34M 188.5sec
V-net [15] 33M 105.6sec

SegResNet [14] 29M 108.7sec
UNETR 92M 209.4sec

Our method 81M 151.1sec

Table 3. Comparisons of the number of parameters and av-
erage inference time of different models on the testing set in
brain stroke lesion segmentation.

based models, while their segmentation accuracy is weak-
ened due to the lack of exploiting spatial information, as
mentioned in Section 3.2. For 3D models, CNN-based mod-
els are more efficient than Transformer-based models but also
weakened in segmentation accuracy due to their deficiency in
modeling long-range dependencies. For two 3D Transformer-
based models, PDSwin-based model has an evident advance
in efficiency. According to the result, our model has 81M
parameters, and the average inference time is 151.1 seconds.
For comparison, the pure 3D Transformer-based method,
Unetr, has 92M parameters and 209.4 seconds for inference
on average. With competitive segmentation accuracy illus-
trated in Section 3.2, our model outperforms the pure 3D
Transformer-based network in efficiency and efficacy.

4. CONCLUSION

To boost efficient and domain-generalizable medical image
segmentation, a pyramidally downsampled 3D Transformer
with cluster-based domain-adversarial learning is proposed
in this paper. PDSwin Transformer employs a pyramidal
downsampling strategy to elevate efficiency with competing
segmentation accuracy. The cluster-based domain-adversarial
learning algorithm increases the number of domains in train-
ing and exploits domain information at a fine-grained level.
Extensive experiments on two benchmark datasets demon-
strate the effectiveness of the proposed model.
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