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Abstract—Federated learning (FL) is a variant of distributed
learning in which multiple clients collaborate to learn a global
model without sharing their data with the central server. In real-
world scenarios, a client may be involved in training multiple
unrelated FL models, which we call multi-model federated
learning (MMFL), and the client sampling strategy and task
allocation are crucial for improving system performance. In this
paper, we propose an optimal sampling method to minimize
the variance of global updates for unbiased learning in MMFL
systems. The resulting method achieves an average accuracy of
over 30% higher than other baseline methods, as we demonstrate
through simulations on real-world federated datasets.

Index Terms—Federated Learning, Client Sampling, Multiple
Models Federated Learning

I. INTRODUCTION

Federated learning (FL) allows multiple clients to collabora-
tively train a model without sharing their datasets [1]. In real-
world scenarios, a client can contribute to multiple FL models’
training concurrently, i.e., multi-model federated learning
(MMFL). For example, a company (server) could update its
mobile keyboard prediction [2], speech recognition [3], and
other FL models on mobile phones (clients) simultaneously.

In the presence of training multiple models simultaneously,
one of the most important challenges is how to improve the
efficiency of FL in terms of accuracy and speed of convergence
of multiple training tasks, and how to ensure that all simul-
taneous training tasks achieve high accuracy in an efficient
manner. Existing MMFL papers proposed several client-task
assignment algorithms, with each selected client contributing
to a single training task [4]–[6]. However, these methods
ignore clients’ heterogeneity by assigning equal probabilities
for all clients to any specific model.

Client sampling/selection methods have been extensively
studied in the case of a single FL model where partial
client participation is desired or imposed. [7] proposed an
optimal variance-reduced sampling strategy that minimizes the
variance of global updates and leads to enhancing the accuracy
and the speed of the convergence. In MMFL, since the same
group of clients is shared across multiple training tasks, single-
model client sampling methods cannot be applied directly:
clients have limited training capacity, so they can only be
assigned to one training task at a time. Inspired by [7], we
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Fig. 1. MMFL Optimal Variance-Reduced Sampling: The central server
collects local client performance and assigns tasks accordingly.

propose to extend their optimal variance-reduced sampling
to MMFL. In this work, we optimize the probability that a
specific client is sampled for each training task, with the aim
of minimizing the variance of global updates in MMFL. The
resulting probability distribution shows that a higher gradient
norm indicates its local updating is more informative and
essential to reduce variance throughout the training process,
thus increasing accuracy. Our preliminary results show that
our strategy outperforms other benchmark methods.

II. MMFL VARIANCE-REDUCED SAMPLING

A. Problem Formulation

Consider an MMFL system with N clients, and S models
(training tasks). We define di,s as the fraction of client i’s
dataset size relative to the total dataset size for model s, where
di,s = ni,s/

∑N
j=1 nj,s.1 The MMFL objective is:

min
w1,··· ,wS

S∑
s=1

N∑
i=1

di,sfi,s(ws), (1)

where fi,s(ws) is the loss function for model weights ws of
task s given client i’s local data. Let Aτ,s denote the set of
active clients contributing to training task s in round τ .2

B. MMFL with Partial Participation

In MMFL, all models are trained iteratively across global
rounds (τ ). Within each global round, we instruct a client to
train a model locally with the local epoch number indexed

1ni,s denotes the number of data points that client i has for task s.
2We assume that Aτ,s is only decided by the sampling strategy and is

non-negotiable for clients.



by t. Let wt
i,s,τ be client i’s local weights of model s, in

local epoch t of global round τ . In each global round, clients
receive the latest model weights from the server (w1

i,s,τ = wτ
s ),

and execute local training: wt+1
i,s,τ = wt

i,s,τ − ητ∇fi,s(w
t
i,s,τ )

for E local epochs. After E local epochs: wE
i,s,τ = w1

i,s,τ −
ητ

∑E
t=1 ∇fi,s(w

t
i,s,τ ). Define the change in local weights

as Uτ
i,s =

∑E
t=1 ∇fi,s(w

t
i,s,τ ). For each model s, the server

aggregates these weights to form a new global model as:

wτ+1
s = wτ

s − ητG
τ
s with Gτ

s =
∑

i∈Aτ,s

di,s
pτs|i

Uτ
i,s (2)

where pτs|i denotes the probability that client i will train model
s during global round τ . Gτ

s is the unbiased estimator of full-
participation training because EAτ,s

[Gτ
s ] =

∑N
i=1 di,sU

τ
i,s.

C. Variance-Reduced Client Sampling

The motivation of the proposed sampling strategy is to
minimize the variance of Gτ

s for all S models. As noted
by [7], Gτ

s approximates full-participation training. Therefore,
reducing its variance could stabilize the convergence. Assume
that we expect m < N clients to be active in each global
round τ . The optimization problem can be written as:

min
{pτ

s|i}

S∑
s=1

EAτ,s

∥ ∑
i∈Aτ,s

di,s
pτs|i

Uτ
i,s −

N∑
i=1

di,sU
τ
i,s∥2

 (3)

s.t. pτs|i ≥ 0,

S∑
s=1

pτs|i ≤ 1,

S∑
s=1

N∑
i=1

pτs|i = m ∀i, s (4)

where ∥ · ∥ is the ℓ2 norm. This problem has the closed-form
solution (see Supplementary Material [8] for a proof):

pτs|i =

(m−N + k)
∥Ũτ

i,s∥∑k
j=1 Mτ

j

if i = 1, 2, · · · , k,
∥Ũτ

i,s∥
Mτ

i
if i = k + 1, · · · , N.

(5)

where ∥Ũτ
i,s∥ = ∥di,sUτ

i,s∥ and Mτ
i =

∑S
s=1 ∥Ũτ

i,s∥. We
reorder clients such that Mτ

i ≤ Mτ
i+1 for all i, and k is the

largest integer for which 0 < (m − N + k) ≤
∑k

j=1 Mτ
j

Mτ
k

.

Note that
∑S

s=1 p
τ
s|i = 1 for clients i = k + 1, · · · , N ,

indicating that these clients are certain to be sampled in round
τ . This is reasonable because their gradient norms are higher,
which means their updates are more informative. The complete
algorithm is presented in Algorithm 1.

Algorithm 1 MMFL Optimal Variance-Reduced Sampling
1: Input: expected active client number m
2: for global round τ = 1, · · · , T do
3: each client i computes local update Uτ

i,s (in parallel)
4: each client i sends ∥Uτ

i,s∥ to the server (in parallel)
5: server computes pτs|i using Eq. 5
6: server broadcasts pτs|i to all clients
7: each client i sends Uτ

i,s to the server with probability pτs|i
8: server aggregates each model s given received Uτ

i,s

9: end for

Fig. 2. The average accuracy across multiple models (5 random seeds). All
models have the same network architecture on Fashion MNIST. For model
s = 1, 2, 3, each client receives data from 30% labels of the total, for model
s = 4, 5, each client receives data from 40% labels of the total.

III. EVALUATION

We evaluate our proposed algorithm in an MMFL setting
including 5 models (training tasks) with the same network
architecture, but with clients’ local datasets having different
non-iid levels (see Fig. 2 caption for details). We include 120
clients in total, with only 10% expected to be active in each
round. To simulate more complex data heterogeneity, around
52.6% of the data is possessed by 10% clients. Each client uses
E = 5 local epochs. We compare the proposed algorithm
with two baselines: 1) Random, where clients are randomly
assigned to a training task, and 2) Round robin, where clients
are divided into groups, with each group being assigned a
training task in a round-robin manner. As illustrated in Fig.
2, our algorithm achieves an average accuracy across multiple
models that is over 30% higher compared to baseline methods.
In MMFL with partial participation training, the variance
of Gτ

s , the unbiased estimator of full participation, can be
large, leading to less accurate global updates. Our method
significantly reduces variance, leading to faster convergence.

IV. CONCLUSION

In this work, we introduce the optimal variance-reduced
sampling strategy for MMFL and provide its closed-form
solution. This approach helps reduce communication costs in
MMFL systems while maintaining high accuracy. In future
work, we will explore more complex MMFL scenarios.
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